自动化复杂文档处理:Onity Group如何使用Amazon Bedrock

在这篇文章中,我们探讨了一家专门从事抵押服务和起源的金融服务公司Onity Group如何使用Amazon Bedrock和其他AWS服务来改变其文档处理能力。该解决方案有助于Onity与以前的OCR和AI/ML解决方案相比,将文档提取成本降低了50%,同时将整体准确度提高了20%。

来源:亚马逊云科技 _机器学习
在抵押服务行业中,有效的文件处理可能意味着业务增长与错过的机会之间的差异。这篇文章探讨了一家专门从事抵押服务和起源的金融服务公司Onity Group如何使用Amazon Bedrock和其他AWS服务来改变其文档处理能力。成立于1988年的Onity Group总部位于佛罗里达州西棕榈滩。该公司通过其主要运营子公司PHH抵押公司和Liberty Reverse Mortgage品牌,为房主,企业客户,投资者和其他人提供抵押服务和发起解决方案。每年在数百个文档类型中跨越数百页的流程,包括通常包含关键信息的法律文档,包括密集文本中的关键信息。该公司还必须管理不一致的手写条目,并需要验证公证和合法密封件,即传统的光学特征识别(OCR)以及AI和机器学习(AI/ML)解决方案的解决方案,以有效地处理。 By using foundation models (FMs) provided by Amazon Bedrock, Onity achieved a 50% reduction in document extraction costs while improving overall accuracy by 20% compared to their previous OCR and AI/ML solution.Onity’s intelligent document processing (IDP) solution dynamically routes extraction tasks based on content complexity, using the strengths of both its custom AI models and generative AI capabilities provided by Amazon Web Services (AWS) through Amazon Bedrock. This dual-model approach enabled Onity to address the scale and diversity of its mortgage servicing documents more efficiently, driving significant improvements in both cost and accuracy.“We needed a solution that could evolve as quickly as our document processing needs,” says Raghavendra (Raghu) Chinhalli, VP of Digital Transformation at Onity Group.“By combining AWS AI/ML and generative AI services, we achieved the perfect