详细内容或原文请订阅后点击阅览
屏蔽扩散:使用稀疏驱除态生成新颖和多样的图像
扩散模型正在生成越来越现实的图像。但是,当用相同提示反复反复发电图像时,从业人员通常会获得相同的,极为怀疑的模式的轻微变化。结果,大多数模型无法重新折断数据中固有的多样性,这阻碍了它们与CreativEtasks或为世界模型提供动力的能力。这项工作提出了一种非常有效的和一般的方法,可以将生成的图像从一组参考图像组中驱逐出去。这是通过在散布中引入数据驱动的驱除术语来实现的。
来源:Apple机器学习研究详细内容或原文请订阅后点击阅览
扩散模型正在生成越来越现实的图像。但是,当用相同提示反复反复发电图像时,从业人员通常会获得相同的,极为怀疑的模式的轻微变化。结果,大多数模型无法重新折断数据中固有的多样性,这阻碍了它们与CreativEtasks或为世界模型提供动力的能力。这项工作提出了一种非常有效的和一般的方法,可以将生成的图像从一组参考图像组中驱逐出去。这是通过在散布中引入数据驱动的驱除术语来实现的。
来源:Apple机器学习研究