Streamline machine learning workflows with SkyPilot on Amazon SageMaker HyperPod
这篇文章与Skypilot共同创建者Zhanghao Wu共同撰写。生成AI和基础模型(FMS)的快速发展已大大提高了机器学习(ML)工作量的计算资源需求。现代ML管道需要有效的系统来在加速的计算资源上分配工作负载,同时确保开发人员的生产率仍然很高。组织需要基础架构解决方案[…]
Accelerate foundation model development with one-click observability in Amazon SageMaker HyperPod
With a one-click installation of the Amazon Elastic Kubernetes Service (Amazon EKS) add-on for SageMaker HyperPod observability, you can consolidate health and performance data from NVIDIA DCGM, instance-level Kubernetes node exporters, Elastic Fabric Adapter (EFA), integrated file systems, Kubernet
在这篇文章中,我们宣布了亚马逊萨吉马制造商Hyperpod支持,用于从SageMaker Jumpstart部署基础模型,以及来自Amazon S3或Amazon FSX的自定义或微调模型。这种新功能使客户可以在相同的HyperPod计算资源上训练,微调和部署模型,从而最大程度地利用整个模型生命周期的资源利用率。
在这篇文章中,我们讨论了如何通过使用IDE和SageMaker Studio的IDE和工具以及与Amazon Eks的Sagemaker Hyperpod的可扩展性和弹性来改善和加快数据科学家的开发经验。该解决方案通过使用AWS服务提供的治理和安全功能来简化集中系统的系统管理员的设置。
Training Llama 3.3 Swallow: A Japanese sovereign LLM on Amazon SageMaker HyperPod
Tokyo科学院已经成功训练了Llama 3.3 Swallow,这是一种使用Amazon Sagemaker Hyperpod的700亿参数大语模型(LLM),具有增强的日本能力。该模型在日语任务中表现出了卓越的性能,表现优于GPT-4O-Mini和其他领先的模型。该技术报告详细介绍了项目期间开发的培训基础设施,优化和最佳实践。
Accelerating Articul8’s domain-specific model development with Amazon SageMaker HyperPod
了解ARTICUL8如何使用特定于域的模型来重新定义企业生成AI,在现实世界应用中的特定模型都超过了通用LLM。在我们最新的博客文章中,我们深入研究了Amazon Sagemaker Hyperpod如何加速ArtiCul8行业领先的半导体模型的开发 - 在将部署时间削减4倍的同时,提高了2倍的准确性,以提高2倍的准确性。
How climate tech startups are building foundation models with Amazon SageMaker HyperPod
在这篇文章中,我们展示了气候技术初创公司如何开发基础模型(FMS),这些模型(FMS)使用广泛的环境数据集来解决诸如碳捕获,碳阴性燃料,新的微塑料破坏和生态系统保存等问题。这些专业模型需要高级计算功能来有效地处理和分析大量数据。
在这个专业信息提取解决方案的基础上建立了建立,并利用Sagemaker Hyperpod的功能,我们与Apoidea Group合作探索了使用大型视觉语言模型(LVLM)的使用,以进一步改善银行和财务文档上的表结构识别性能。在这篇文章中,我们介绍了使用Sagemaker Hyperpod上的Llama-Factory进行QWEN2-VL-7B教学模型进行微调的QWEN2-VL-7B教学模型的逐步代码。
Reduce ML training costs with Amazon SageMaker HyperPod
在这篇文章中,我们探讨了大规模边界模型培训的挑战,重点是硬件故障以及亚马逊萨吉式制造商HyperPod的好处 - 一种解决方案,可最大程度地减少干扰,提高效率并降低培训成本。
Running NVIDIA NeMo 2.0 Framework on Amazon SageMaker HyperPod
在这篇博客文章中,我们探讨了如何将Nemo 2.0与Sagemaker Hyperpod集成,以实现对大型语言模型(LLMS)的有效培训。我们介绍设置过程,并提供逐步指南,以在Sagemaker HyperPod群集上运行NEMO作业。
Unleash AI innovation with Amazon SageMaker HyperPod
在这篇文章中,我们展示了SageMaker HyperPod及其在AWS RE:Invent 2024上引入的新功能如何满足现代AI工作负载的需求,从而提供了针对分布式培训和加速推理的持久和优化的群集,并在云规模上加速推理和有吸引力的价格。
Customize DeepSeek-R1 distilled models using Amazon SageMaker HyperPod recipes – Part 1
在这个两部分的系列中,我们讨论了如何通过使用deepSeek-R1模型及其蒸馏变量的预先构建的微调工作流(也称为“食谱”)来减少DeepSeek模型的自定义复杂性,并作为亚马逊SageMaker HyproPod食谱的一部分发布。 In this first post, we will build a solution architecture for fine-tuning DeepSeek-R1 distilled models and demonstrate the approach by providing a step-by-step example on customizing t
Best practices for Amazon SageMaker HyperPod task governance
在这篇文章中,我们提供了最佳实践,以最大程度地提高SageMaker HyperPod任务治理的价值,并使管理和数据科学体验无缝。在管理和运行生成的AI开发任务时,我们还讨论了共同的治理方案。
Advanced fine-tuning methods on Amazon SageMaker AI
在AWS上微调ML模型时,您可以为您的特定需求选择合适的工具。 AWS为数据科学家,ML工程师和业务用户提供了一系列全面的工具,以实现其ML目标。 AWS建立了支持各种ML复杂性的解决方案,从简单的Sagemaker培训工作进行FM微调到萨吉马制造商Hyperpod的力量进行尖端研究。我们邀请您探索这些选项,从适合您当前需求的内容开始,并随着这些需求的变化而发展您的方法。
New capabilities in Amazon SageMaker AI continue to transform how organizations develop AI models
在这篇文章中,我们分享了Sagemaker AI中的一些新创新,这些创新可以加速您的构建和培训AI模型。这些创新包括SageMaker Hyperpod中的新可观察性功能,在HyperPod上部署JumpStart模型的能力,从本地开发环境中与SageMaker AI的远程连接以及完全管理的MLFLOW 3.0。
Multi-account support for Amazon SageMaker HyperPod task governance
在这篇文章中,我们讨论了具有多个帐户的企业如何访问共享的Amazon Sagemaker HyperPod群集以运行其异质工作负载。我们使用SageMaker HyperPod任务治理来启用此功能。
Customize DeepSeek-R1 671b model using Amazon SageMaker HyperPod recipes – Part 2
在这篇文章中,我们使用食谱来微调原始的DeepSeek-R1 671b参数模型。我们通过使用Sagemaker培训工作和Sagemaker Hyperpod的逐步实施这些食谱来证明这一点。
Ray jobs on Amazon SageMaker HyperPod: scalable and resilient distributed AI
Ray是一个开源框架,使创建,部署和优化分布式Python作业变得直接。在这篇文章中,我们演示了在Sagemaker Hyperpod上运行射线作业的步骤。