OLADOYIN AKINSULI 人工智能和网络安全策略师,萨里大学,英国吉尔福德 摘要- 供应链攻击在网络安全中发展成为一个强大的主题和攻击,它使用复杂的人工智能策略来渗透和颠覆有保障的供应商和软件开发商。这些复杂的攻击利用供应链中现有的信任,通过看似正常的软件更新、固件或服务来传播恶意软件,这意味着人工智能的集成提高了这些攻击的准确性和隐蔽性,并提高了目标获取、恶意软件适应性和软件产品中机器学习模型的操纵。本研究的研究目标有三点:确定人工智能如何加剧供应链风险,这涉及了解最近众所周知的安全漏洞的特征;提出可以保护组织网络的缓解措施。通过使用案例研究以及案例研究和数据分析等分析工具,该研究表明提高安全性和确保实时安全性对于防范人工智能威胁至关重要。先进且影响深远的洞察表明,人工智能在供应链攻击中的持续发展,不仅提升了攻击速度,还加速了攻击过程,而传统防御对此束手无策。研究结果表明,零信任态势、行为分析和安全的软件物料清单 (SBOM) 是可行的,有助于加强供应链。就对未来研究的影响而言,它为以前的研究增加了对供应链攻击中使用人工智能所带来的新挑战的考虑,这是构建安全网络空间保护架构的一个关键研究领域,对于在日益互联的世界中保护关键组织和敏感信息的完整性至关重要。
摘要 糖业是印度第二大农业产业,对该国的水资源、粮食和能源安全有着重大影响。在本文中,我们使用关联方法来评估印度相互关联的水资源-粮食-能源挑战,特别关注印度最大的糖产区之一马哈拉施特拉邦的糖业政治经济。我们的工作强调了三点。首先,政府对糖业的支持可能会持续下去,因为政策制定者与该行业有着千丝万缕的联系。根深蒂固的政治利益继续推行激励糖业生产的政策。随着糖产量过剩,政府出台了额外政策来减少这种过剩,从而保护糖业。其次,尽管糖业经济对印度很重要,但糖业政策对水资源和营养都有不利影响。长期以来,政府对甘蔗定价和销售的支持扩大了马哈拉施特拉邦低降雨地区的耗水甘蔗灌溉,这减少了该邦的淡水资源,并限制了更有营养的作物的灌溉。尽管营养价值低,但空热量糖通过公共分配系统得到了补贴。第三,印度政府目前正在推广以甘蔗为基础的乙醇生产。这项政策的好处是提供更大的能源安全,并在印度市场创造对剩余糖的新需求。我们的分析表明,一项国家生物燃料政策,鼓励用甘蔗汁而不是直接从糖蜜中生产乙醇,可能有助于减少人类消费的补贴糖,而不必扩大水和土地的使用来增加甘蔗的生产。
原子位移的高阈值能量(Ed)[5]、点缺陷的动态退火[6]以及没有传统的栅极绝缘体[7],这些使得它们在辐射环境中也具有吸引力。GaN HEMT 中故意引起的应力场在整个通道中基本是均匀的。这可能是为什么局部应力的概念尚未在文献中研究的原因。另一个原因可能是局部应力的全局平均值很小;这似乎太小而无法影响任何特性。最后,以纳米级分辨率映射机械应力是一项艰巨的任务。所有这些因素使得 GaN HEMT 文献只能研究均匀应力场的作用。但是,关态偏置可能会在电场周围引起高度局部化的机械应力。[8] 器件制造和设计特征也会产生应力局部化。然而,目前还没有人齐心协力绘制机械应力的空间非均匀性图,以研究其对晶体管特性的影响。常用的实验技术,如悬臂[9]、三点弯曲[10]和四点弯曲[11],都无法捕捉到应力局部化。衬底去除[12,13]也用于产生均匀的弯曲应力。本研究的动机来自应力约束效应提供的识别易受辐射区域的机会。我们假设纳米级约束应力(机械热点)可能决定辐射损伤(甚至是操作性能下降)的特定位置成核。例如,HEMT 的栅极漏电被归因于促进肖特基接触金属化相互扩散的局部应力强度。[14]只有少数研究试图控制固有应力以显示对辐射效应的明显影响。 [15,16] 有必要将这些研究扩展到特定类型的辐射和压力。
2019 年 7 月,威勒尔自治市议会宣布进入气候紧急状态。直接结果是,已经制定了多项专门计划来减少气候变化的影响。这些计划包括威勒尔的 Cool 2 气候战略、威勒尔的新地方计划、其蓝色和绿色基础设施研究、传粉者计划,以及最后但并非最不重要的 2020-2030 年威勒尔树木、树篱和林地战略。威勒尔自治市议会与威勒尔树木倡议 (WiT) 旗下的当地组织一起制定了威勒尔树木、树篱和林地战略。该战略是英国首个通过与广泛的社区团体合作制定的战略,并且是在充分咨询公众后制定的。其重点是在威勒尔保护和种植足够的树木,为我们所有人建立更健康、更环保的生活条件。该战略的完整内容可在此处找到:wirral.gov.uk/treestrategy 树木是我们抵御气候变化的天然“盔甲”。它们捕获二氧化碳并将其储存在木材和其他植物中,从而将其从大气中去除。树篱和林地为野生动物提供了重要的栖息地。出于这些原因,该战略制定了管理和增加威勒尔树木和树篱的最佳实践,遵循英国气候变化委员会关于增加森林覆盖率的建议。本摘要文件概述了我们增加威勒尔树木和树篱覆盖率的愿景以及实现这一目标的三点计划。通过公众参与——与我们的许多当地团体和您(我们的居民)合作——我们将保护和恢复我们已经拥有的土地,并种植更多的树木和树篱,以打造更绿色、更快乐、更健康的威勒尔。
权力来源:农场的权力来源 - 人类,动物,机械,电气,风,太阳能和生物质;生物燃料。农场力量:LC的热力学原理。引擎;我知道了。发动机周期;发动机组件;燃料和燃烧;润滑剂及其特性; LC。发动机系统 - 燃料,冷却,润滑,点火,电气,进气和排气; I.C.的选择,操作,维护和维修引擎;功率效率和测量;计算功率,扭矩,燃油消耗,热负荷和功率损失;性能指数,工具和拖拉机的成本分析。拖拉机和电力耕种者:类型,选择,维护和维修拖拉机和电力分配者;拖拉机离合器和刹车;电力传输系统 *齿轮列车,差速器,最终驱动器和动力起飞;拖拉机底盘的力学;牵引理论;三点挂钩 - 免费链接和约束链接操作;拖拉机中使用的转向和液压控制系统;拖拉机测试和性能;拖拉机和农具设计中的人工工程和安全考虑。土壤和水保护工程流体机械:理想和真实的流体,流体的特性;静水压力及其测量;连续性方程,运动学和流动动力学;伯努利定理;管道中的层流和湍流,达西·韦斯巴赫(Darcy Weisbach)和Hazen-Williams方程,穆迪(Moody's)图;流过孔口,堰和缺口;在开放通道中流动,尺寸分析 - 几何无限数字的概念。土壤力学:土壤的工程特性;基本定义和关系;土壤的索引特性;渗透性和渗漏分析;剪切力,Mohr的压力圈,主动和被动的地球压力;斜坡的稳定性,Terzaghi的一维土壤整合理论。- ,水文:水文循环和其成分的测量;气象参数及其测量;分析降水数据;径流估计;水文分析,单位水文理论和应用;流量测量;
多年来,为了满足从辅助机器人和假肢到自主操作和物流等广泛应用领域的设计要求和目标,人们设计了多种形式的假手 (Piazza et al., 2019)。此外,这些设计要求和目标也在不断发展。例如,过去用于自主操作任务的夹持器的设计主要由对稳健性和安全性的需求驱动;如今,需要能够适应外部和非结构化环境并与人类交互的解决方案 (Piazza et al., 2019; Bhatia et al., 2019)。事实上,工业 4.0 范式正在积极推动生产线上的人机协作 (Matsas et al., 2018)。标准工业夹持器通常采用两点或三点捏合抓握,因此与人类的抓握能力相比是有限的 (Kappassov et al., 2013)。因此,使夹持器能够模仿人手的外观和力学原理的可能性代表着朝着多个目标迈出了一步。假肢也需要改进的功能和拟人化的外观(Ten Kate 等人,2017 年)。尽管这两个应用领域存在内在差异,但它们在设计和控制方面都需要廉价且不太复杂的解决方案(Ten Kate 等人,2017 年;Piazza 等人,2019 年)。增材制造 (AM) 技术、硬件组件的持续开发和小型化以及开源硬件的可用性(Piazza 等人,2019 年)在假手的演变中发挥着根本性的作用。3D 打印机械手和 3D 打印软机器人解决方案(Truby 等人,2019 年;Piazza 等人,2019 年)是该领域的两个新兴趋势。 AM 技术有助于降低这些机器人设备的复杂性和生产工作量(Tian 等人,2017 年),例如,可以减少零件总数。还开发了 4D 打印夹持器的尖端示例(Ge 等人,2016 年)。它们的功能归因于形状的固有属性
背景:脑机接口(BCI)系统帮助运动功能障碍患者与外界环境进行交互。随着技术的进步,BCI系统已在实践中得到应用,但其实用性和可用性仍然受到很大挑战。使用BCI系统前往往需要大量的校准时间,这会消耗患者的精力和耐心,并容易导致焦虑。针对这一问题,我们提出了一种与受试者无关的零校准方法。方法:提出一种双分支多尺度自编码网络(MSAENet)实现与受试者无关的运动想象分类,旨在实现BCI的即插即用。首先,该网络由一个多尺度分支和一个自动编码器(AE)组成,用于从不同角度进行特征学习。其次,以EEG信号与8-30 Hz频段内常见空间模式之间的协方差作为空谱特征,并将特征预提取信息作为MSAENet的输入。最后,网络引入中心损失函数提升分类能力。在三个公开数据集BCIV2a,SMR-BCI,OpenBMI上测试网络泛化能力。结果:结果表明,所提网络在三个数据集上均表现出良好的效果,在受试者独立的情况下,MSAENet在BCIV2a和SMR-BCI数据集上优于其他四种比较方法,而在OpenBMI数据集上F1得分值高达69.34%;分类性能最好的受试者相关结果明显优于其他四种先进的比较方法。我们的方法在保证较少的参数量和较短的预测时间的同时,能够保持较好的分类精度。结论:MSAENet验证了以下三点:(1)空间频域特征可以从原始EEG信号中提取有效信息。(2)双分支多尺度特征融合可以更全面地提取特征。 (3)中心损失函数的引入弥补了Softmax分类器只考虑类间距而忽略类内距离的缺陷,实现了零校准,有效解决了BCI应用中需要大量校准时间的问题。
剥离 ZrSe 3 中激子的强各向异性应变可调性 Hao Li、Gabriel Sanchez-Santolino、Sergio Puebla、Riccardo Frisenda、Abdullah M. Al-Enizi、Ayman Nafady、Roberto D'Agosta *、Andres Castellanos-Gomezgi * Hao Liebla、Dr. Sergio Puebla。里卡多·弗里森达 (Riccardo Frisenda) 博士Andres Castellanos-Gomez 材料科学工厂。马德里马德里科学研究所 (ICMM-CSIC),马德里,E-28049,西班牙。电子邮件:Andres.castellanos@csic.es Gabriel Sanchez-Santolino GFMC,马德里康普顿斯大学材料物理系和多学科研究所,28040马德里,西班牙 1,沙特阿拉伯教授。 Roberto D'Agosta 纳米生物光谱组和欧洲理论光谱设施 (ETSF)、聚合物和先进材料系:物理、化学和技术、巴斯克大学 UPV/EHU、Avenida Toulouse 72、E-2018 西班牙巴斯蒂安,FUEU,圣塞巴斯蒂安科学中心,Plaza Euskadi 5,E-48009 毕尔巴鄂,西班牙电子邮件:roberto.dagosta@ehu.es 关键词:三硒化锆 (ZrSe 3 )、2D 材料、应变工程、各向异性、带隙 我们研究单轴应变对 Zr-Seco 带结构的影响,其中半导体以 3 结构各向异性为标志。利用改进的三点弯曲试验装置,使薄 ZrSe 3 薄片沿不同的晶体取向受到单轴应变,并通过微反射光谱监测应变对其光学特性的影响。获得的光谱显示出在单轴拉伸时发生蓝移的激子特征。这种转变在很大程度上取决于施加应变的方向。当薄片沿 b 轴受拉时,激子峰偏移约 60-95 meV/%,而沿 a 轴,偏移仅达到约 0-15 meV/%。采用从头算方法研究了沿不同晶体方向施加单轴应变对ZrSe 3 的能带结构和反射光谱的影响,结果与实验结果高度一致。 1. 简介
图 36:Vitel v. 2000 s175 熔接机 .......................................................................................... 67 图 37:FBG 的放置 ................................................................................................................ 68 图 38:激光光源的视觉指示 ................................................................................................ 69 图 39:验证 FBG 功能的测试信号。 ................................................................................ 69 图 40:上部应变计附件 ...................................................................................................... 70 图 41:上部和下部应变计 #1 和 #2 ................................................................................ 70 图 42:微测量 P3 列车指示器和记录器以及 LCD 显示屏。 ................ 72 图 43:应力和温度应力随时间的变化 (Vergani、Colombo 和 Libonati 2014) ............................................................................................................. 74 图 44:每个间隔的热曲线 (Vergani、Colombo 和 Libonati 2014) ............................................................................. 75 图 45:涡轮叶片的热成像数据 (Dutton 2004)。 ............................................................................. 75 图 46:测试样本大小 ............................................................................................................. 76 图 47:材料属性样本 12 层 3 x (25 x 250) ............................................................................. 77 图 48:拉力试验机 (MTS Insight 310)。 ........................................................... 78 图 49:25 毫米样品应力与应变图 .............................................................................. 79 图 50:3 个样品的平均弹性模量 .............................................................................. 80 图 51:三点弯曲夹具(ISO 1998) .............................................................................. 82 图 52:进行三点弯曲测试的三个样品 ............................................................................. 84 图 53:弯曲试验前后 ............................................................................................. 84 图 54:三个样品的弯曲与载荷图 ............................................................................. 85 图 55:失效模式 ............................................................................................................. 86 图 56:最外层的弯曲断裂。 ............................................................................................. 87 图 57:第一个拉伸样品顶视图。 ........................................................................... 89 图 58:第二个拉伸样品正面图 .............................................................................. 89 图 59:使用第一个样品进行初步测试以及裂纹扩展的光学测量 91 图 60:用于模拟结冰的塔斯马尼亚橡木轮廓 ................................................................... 92 图 61: 第 2 次拉伸样品顶视图 .............................................................................................. 92 图 62: 控制第 2 次拉伸样品的形状 .............................................................................................. 92 图 63: 第 2 次拉伸样品侧视图 ...................................................................................................... 93 图 64: 拉伸试验的失效模式(标准 2000) ............................................................................. 94 图 65: 弯曲样品的顶视图 ...................................................................................................... 94 图 66: 弯曲样品的前视图 ...................................................................................................... 95 图 67: 上部应变计附件 ............................................................................................................. 95 图 68: 传感器放置的侧视图 ............................................................................................................. 96 图 69: 夹具中的弯曲样品 ............................................................................................................. 96 图 70: 弯曲试验的失效模式(标准 2000) ............................................................................. 97 图 71: 全部三个样品喷涂黑色以准备进行热成像测试 ...................................................................... 98 图 72:热成像测试期间的第一个和第二个拉伸样品 ...................................................................... 99 图 73:810 疲劳机的设置 ...................................................................................................... 99 图 74:热弹应力分析 ............................................................................................................. 100 图 75:拉伸初始测试 ............................................................................................................. 101 图 76:循环中的热成像图片 ............................................................................................. 102 图 77:热成像结果 ............................................................................................................. 103 图 78:视觉裂纹萌生 ............................................................................................................. 103 图 79:第二个拉伸样品的应变数据 ............................................................................................. 10495 图 67:上部应变计附件 ...................................................................................................... 95 图 68:传感器放置侧视图 ...................................................................................................... 96 图 69:夹具中的弯曲样品 ...................................................................................................... 96 图 70:弯曲测试的故障模式(标准 2000) ............................................................................. 97 图 71:为准备进行热成像测试,所有三个样品都喷涂黑色 ............................................................. 98 图 72:热成像测试期间的第一个和第二个拉伸样品 ............................................................. 99 图 73:810 疲劳机的设置 ............................................................................................. 99 图 74:热弹应力分析 ............................................................................................................. 100 图 75:拉伸初始测试 ............................................................................................................. 101 图 76:循环中的热成像图片 ............................................................................................. 102 图 77:热成像结果 ............................................................................................................. 103 图 78:视觉裂纹萌生 ................................................................................................ 103 图 79:第二个拉伸样品的应变数据 .............................................................................. 10495 图 67:上部应变计附件 ...................................................................................................... 95 图 68:传感器放置侧视图 ...................................................................................................... 96 图 69:夹具中的弯曲样品 ...................................................................................................... 96 图 70:弯曲测试的故障模式(标准 2000) ............................................................................. 97 图 71:为准备进行热成像测试,所有三个样品都喷涂黑色 ............................................................. 98 图 72:热成像测试期间的第一个和第二个拉伸样品 ............................................................. 99 图 73:810 疲劳机的设置 ............................................................................................. 99 图 74:热弹应力分析 ............................................................................................................. 100 图 75:拉伸初始测试 ............................................................................................................. 101 图 76:循环中的热成像图片 ............................................................................................. 102 图 77:热成像结果 ............................................................................................................. 103 图 78:视觉裂纹萌生 ................................................................................................ 103 图 79:第二个拉伸样品的应变数据 .............................................................................. 104第二个拉伸样品的应变数据................................................................................104第二个拉伸样品的应变数据................................................................................104
我很高兴欢迎您参加 Mary Kay O’Connor 过程安全研讨会论文集 2020 年年度研讨会。2020 年研讨会是该系列的第 23 届,由于正在发生的冠状病毒大流行的影响,首次以虚拟方式举行。我们的研讨会是为了纪念我们的同名人 Mary Kay O’Connor 和我们的创始主任 M. Sam Mannan 教授。研讨会是一项重要的年度活动,重点关注影响过程安全和风险管理的研究、教育、培训和服务问题。非常感谢您的参与,特别是在这个艰难时期,我们都在努力应对冠状病毒大流行对我们的生活和日常运营的影响。您的参与对于研讨会的成功以及推动过程安全技术和概念的事业以使行业更加安全至关重要。我们认为,积极改进工艺安全计划对企业有利,尤其在当前困难时期,对行业利润有积极影响。举办本次年度研讨会的目的有三点。首先,本次年度活动提供了一个独立、公正的论坛,供业界、学术界、政府机构和其他利益相关者交流思想和进行讨论,共同探讨工艺安全领域的关键研究问题和进展。其次,它提供了一个绝佳的交流平台,工艺安全专业人员可以在此建立点对点联系,以备将来之需,同时了解他们可以从他人那里获得的各种服务。最后,我们坚信,在我们今天应对 COVID-19 的不确定局面时,良好、扎实的研究可以帮助解决当今行业面临的复杂而有趣的问题。识别这些问题并利用研讨会讨论中汇集的专业知识交换想法和意见将为解决当前问题提供背景信息。此外,研讨会的参与者还可以借此机会了解 Mary Kay O'Connor 过程安全中心所做的前沿研究。这些会议记录包含研讨会计划、在研讨会上发表并在截止日期前提交的论文以及中心的其他信息内容。我们希望您从本次研讨会中获得最大收益,并强烈鼓励您参加虚拟讨论。我们期待着 2021 年 10 月在德克萨斯 A&M 大学举行的面对面研讨会上欢迎大家。请随时与我或其他中心人员联系,提供您对研讨会和中心其他活动的想法和意见。祝愿一切平安恢复正常。