这些规范详细信息不适用于提供或提供出售的任何特定产品。制造商保留更改其规格的权利,包括颜色,无论有无通知,都以他们认为合适的方式和这种方式。可能涉及大调和微小变化。每一项努力都是为了确保本小册子中包含的细节的准确性。在公司向任何人的要约的任何情况下,本出版物均不构成。所有销售均由有关分销商或经销商进行的,但根据分销商或经销商提供的标准销售条件和保修条件的利益,可以根据要求从他们那里获得其副本。此宣传材料适用于《仅英国唯一贸易描述法》(1968年)。虽然努力确保规格准确性,但在分发前几个月准备并打印了手册,因此不能总是立即反映规范的变化或在某些孤立情况下提供特定功能的提供。始终建议客户与供应经销商讨论规范详细信息,尤其是如果您的模型选择取决于所宣传的功能之一。
Fredkin 门以物理学家 Edward Fredkin 的名字命名,他引入了可逆计算的概念,并为可逆逻辑门的发展做出了贡献。可逆门在量子计算中非常重要,因为它们可以保存信息,因此可用于构建信息不能丢失的量子电路。Fredkin 门,也称为受控交换 (CSWAP) 门,是量子计算和可逆计算中的三位可逆门。它对三位执行受控交换操作。如果第一位(控制位)设置为 1,Fredkin 门会交换第二位和第三位,如果控制位为 0,则保持不变。可逆逻辑也称为信息无损逻辑,因为嵌入在电路中的信息如果丢失可以恢复。人们设计和发明了许多可逆门。例如 Fredkin 门、Toffoli 门、Peres 门和 Feynman 门。可逆逻辑具有广泛的应用,被认为是未来技术之一。但逻辑电路设计基于不可逆的逻辑门。这些逻辑门有助于未来实现更高端的电路。本文尝试使用可逆门设计逻辑门,并设计了一些高端电路,例如二进制到灰度、灰度到二进制、加法器、减法器等。
量子计算和信息的权威教科书仍然是 Michael A. Nielsen 和 Isaac L. Chuang 的经典著作《量子计算和量子信息》(昵称 Mike and Ike)[ 3 ]。如果你对量子计算有兴趣,你应该买这本书 1 。这些笔记将对这个主题进行不同的探讨,在某些地方会更详细,包含一些较新的材料,但会忽略其他领域,因为没有必要重复 Mike 和 Ike 已经讲过的内容。John Preskill 的讲座笔记 [ 4 ] 是另一篇非常出色的(尽管总是不完整)关于这个主题的论述。有关量子力学的基本介绍,请参阅 Leonard Susskind 和 Art Friedman 撰写的《量子力学:理论最小值》[ 5 ]。传统的量子力学教科书没那么有用,因为它们往往会快速跳过基本面和信息方面,而专注于光、原子、腔体等的具体行为。显然,如果你正在构建一台量子计算机,这些物理细节很重要,但对于编程来说却不那么重要,而且我认为传统方法往往会掩盖量子信息的本质以及量子物理与经典物理的根本区别。但在这样的物理文本中,我推荐 JJ Sakurai [ 6 ] 的《现代量子力学》。有关量子计算的更温和的介绍,请参阅 Eleanor G. Rieffer 和 Wolfgang H. Polak [ 7 ] 的《量子计算:温和介绍》。另一个有趣的是 Andy Matuschak 和 Michael Nielsen 的《量子国度》。这是一门在线量子计算入门课程,内置间隔重复 [ 8 ]。 Scott Aaronson 的《德谟克利特以来的量子计算》[ 9 ] 也是一本不错的入门书,特别是对于计算复杂性理论而言。从数学上讲,量子力学主要是应用线性代数,学习更多的线性代数永远不会错。Ivan Savov [ 10 ] 的《线性代数指南》是一本很好的入门书,Sheldon Axler [ 11 ] 的《线性代数入门》则更深入。若想深入了解量子信息,John Watrous [ 12 ] 的《量子信息理论》和 Mark M. Wilde [ 13 ] 的《量子信息理论》都是很棒的书,尽管分量很重。如果你的孩子还很小,可以让他们从小就开始学习 Chris Ferrie 和 whurely 的《婴儿量子计算》[ 14 ]。
在过去的 25 年中,出现了一些重要的发展,这些发展为改进合成方法做出了贡献。从硬件角度来看,最相关的是计算机速度的提高和内存容量的增加。这为包括搜索 [12]、进化算法 [7]、[8]、[10] 或 SAT 求解器 [17] 在内的可逆/量子电路的合成提供了可能性。在软件方面,可以提到专门的高效库的开发。在门级别,可以提到使用值 0 作为控制信号,用“白点” [23]、[14] 标识,通常称为“混合极性”,以及使用不相交控制信号 [13]、[15]。接下来,将分析 Fredkin 门在可逆域中的“推广”及其在量子域中的相关应用。值得一提的是,在[5]中使用了“广义弗雷德金门”这个术语,指的是具有多条控制线的弗雷德金门。
Thermapro™ 隔热分段门厚 3 英寸,采用压力注入的无 CFC 聚氨酯泡沫,计算出的 R 值为 25.8。CHT-850 型号采用钢化铝面板,具有 24 号灰泥纹理,外表面和内表面均有 V 型槽。CHT-832 型号采用镀锌钢面板,外表面为 20 号平齐光滑表面,内表面为 26 号木纹纹理,有 V 型槽(内表面可选 20 号)。CHT-816 型号采用镀锌钢面板,具有 26 号木纹纹理,外表面和内表面均有 V 型槽。分段接头为榫槽接头,具有抗风性。各部分均采用 16 号钢制端柱和全垂直钢制背板,以增加强度和坚固的表面硬件连接点。
在文件验证时,以印度政府职位任命格式支持他们属于 OBC 中央名单中的 OBC 社区。候选人在任命前还应提交一份声明,说明他/她不属于 OBC 的奶油层。用于教育目的的 OBC 非奶油层证书将不予考虑。包含非奶油层条款的 OBC 种姓证书应在申请提交截止日期有效。证书中提到的种姓名称应符合中央政府名单/通知。
摘要 - 我们提出了一种通用方法,可以在校准少量参考脉冲后快速生成任何连续参数化的量子门集的高效果控制脉冲。我们发现,用于不同量子操作的优化对照脉冲之间插值不会立即产生高限度的中间操作。为了解决此问题,我们提出了一种方法来优化控制脉冲以提供良好的插值。我们选择了感兴趣的门家族中的几个参考操作,并优化实施这些操作的脉冲,然后迭代地重视脉冲以指导其形状,以使其形状相似,以与密切相关的操作相似。一旦对此参考脉冲进行了校准,我们可以使用直接的线性插值方法立即获得连续操作空间中任意门的高层脉冲。我们在两分门的三参数cartan分解上演示了此过程,以获得具有始终高填充性的任何任意两级栅极(直至单量子操作)的对照脉冲。与以前的神经网络方法相比,该方法是7.7倍,在计算上有效,以校准所有单量门门集的脉冲空间。我们的技术概括为任何数量的门参数,可以轻松地与先进的脉冲优化算法一起使用,从而可以更好地从模拟转换为实验。
这个多门控制器提供了多达四个门,包括对多达八个OSDP读取器和八个锁的支持。非常适合带有轴或第三方橱柜的新的和改造的集中装置。它提供的占地面积比市场上的大多数门控制器更小。内置锁定电源管理简化了安装。在支持OSDP读取器和Wiegand读取器的可选配件的情况下,该可扩展的门控制器针对小型和大型安装进行了优化。它可以与轴相机站安全进入或合作伙伴解决方案一起使用,以提供多合一的视频和访问控制管理系统。