自激振荡(系统在非周期性刺激下的周期性变化)对于在软机器人技术中创建低维护自主设备至关重要。宏观尺寸的软复合材料通常掺杂有等离子体纳米粒子,以增强能量耗散并产生周期性响应。然而,虽然目前尚不清楚光子纳米晶体的分散体是否可以作为软致动器对光作出反应,但对纳米胶体在液体中自激振荡的动态分析也缺乏。这项研究提出了一种用于照明胶体系统的新型自激振荡模型。它预测热等离子体纳米粒子的表面温度及其簇的数密度在从次声到声学值的频率范围内共同振荡。对自发聚集的金纳米棒的新实验,其中光热效应在宏观尺度上改变了光(刺激)与分散系统的相互作用,有力地支持了该理论。这些发现拓展了目前对自激振荡现象的认识,并预测胶体状态的物质将成为容纳光驱动机械的合适载体。从广义上讲,我们观察到一种复杂的系统行为,从周期性解(霍普夫-庞加莱-安德罗诺夫分岔)到由纳米粒子相互作用驱动的新动态吸引子,将热等离子体与非线性和混沌联系起来。
激光驱动的离子光束因其在多学科研究和技术中的潜在使用而引起了极大的关注。临床前研究对它们的放射生物学有效性,已经确定了使用激光驱动的离子束进行放射疗法的前景。特别是,通过高离子束电荷和激光驱动的离子束的唯一短束长度来实现对超高瞬时剂量率的有益作用的研究。此类研究需要可靠的在线剂量测定方法,以监视每次激光射击的束电荷,以确保将规定的剂量准确地应用于生物样品中。在本文中,我们介绍了对激光驱动离子加速器的集成电流变压器(ICT)的首次成功使用。这是一种无创诊断,用于测量加速离子束的电荷。它可以在线估计放射生物学实验中施加的剂量,并促进离子束调谐,特别是对激光离子源的优化以及质子传输光束线的对齐。我们介绍了ICT实施和与其他诊断的相关性,例如放射性膜,汤姆森抛物线光谱仪和闪烁体。
Eli Beblines设施的Alfa(加速度的Allegra激光)是由KHz L1-Allegra激光器驱动的激光等离子体电子加速器。ALFA可用的光学设置使用户能够以相对论强度(〜5x10 18 w/cm 2)进行激光互动实验,此外,还以可调的频率(最高1 kHz)以及可调的能量(最大可乐(最大值)50 meV)提供超短电子束(几乎是FS)。在ALFA上已经证明了这种独特的能力,以优化KHz激光Wakefield等离子体加速度,以提供超相对性(<50 MEV),超短效率(几个FS)电子束本质上与其他激光脉冲。这些独特的特征可以应用于非常高的能量电子(VHEE)放射疗法和剂量测定法,X射线散射和BETATRON辐射,超快速放射性生物学和放射化学以及辐射对电子学研究的效果。
摘要 - 对人类定居的探索和建立对火星的兴趣正在迅速增长。要实现这一目标,将需要快速运输来携带重要的物资和货物。当前的火星任务至少需要150天,在紧急情况或紧急需求的情况下,这将太长。因此,我们提出了一种尖端技术,该技术可能会使运输时间短达20天:激光驱动的光帆。这种推进方法使用地面激光阵列来推动一个小型轻巧的航天器,该航天器连接到轻帆至非常高速的速度,使任务比目前的任务快得多。通过使用MATLAB模型和激光推进计算工具,我们可以看到并确定这些任务的最佳轨迹和出发窗口。我们讨论了这些轨迹,并表明在2030 - 2032年之间的27个月内,在特定的启动窗口中可能进行了这些任务,但在此期间也面临实际挑战。在太阳连接期间,由于太阳的接近度,这种快速的运输任务受到限制,但是当过境时间要求放松时,在所有轨道相时都可以快速过境。激光阵列能够产生高达13吉瓦的激光阵列,以使20天的任务具有5 kg的航天器,能够将有价值的轻质货物携带到连接附近,但在反对周围只需要0.55 gw。所需的航天速度始终超过太阳系逃逸速度,而轨迹是双曲线。对未来工作的重要挑战涉及减速和进入,下降和着陆的机制和过程。火星上的基于地面的激光阵列可以解决这一挑战的某些方面,但是轨道几何限制了减速潜力,这意味着有效载荷需要对大型减速和影响g-负载稳健。对火星的这些20天任务可以作为更复杂,遥远任务的前身。可以提高航天器质量能力,同时还可以通过优化激光阵列和轻型帆性能来减少运输时间。也可以同时推出和增强多个航天器,以承担更多有效载荷并降低成本。这项工作旨在作为一个概念证明,即可以通过此类任务运输轻巧的有效载荷。可以在接下来的几十年中开发实现快速运输任务的技术,并将其应用于其他天体的深空任务,并将其旅行到星际空间。
在基于液晶弹性体 (LCE) 的刺激响应材料的潜在应用中,开发不受束缚的软致动器是最具吸引力的应用之一。[1–4] 例如,在软体机器人中[5–8] 以及在微流体和仿生设备中,[9,10] 含有光活性分子的光响应性 LCE 聚合物已得到广泛应用。[11,12] 与温度和湿度等其他刺激相比,光作为不受束缚的刺激物的好处是时空控制、可调性和直接应用。[13–15] 因此,开发基于可聚合 LCE 材料的光驱动致动器的努力已成为一个成熟的研究课题,为将光转化为机械运动奠定了宝贵的基础。 [16,17] 偶氮苯衍生物是目前 LCE 执行器中最突出的光开关,因为它们易于加入,并且能够实现快速、可逆响应的远程控制驱动。[18,19] 然而,通常需要液晶 (LC) 材料的光聚合才能获得可逆的形状变化。[20,21] 这种光诱导交联过程非常耗时,而且高效固化具有挑战性,而偶氮苯部分的不良异构化则进一步阻碍了这一过程。[22]
图 2:单个电子上的双量子比特门示例,强调了量子比特空间与独立量子比特子空间的分离。所提出的门对量子比特的不同量子比特子空间执行独立操作。(a)在同一自由电子上的两个独立子空间上实现两个 1 量子比特量子门。电子经历 PINEM 相互作用,该相互作用转换为量子比特空间中围绕 𝑧̂ 轴的两个 𝜋/2 1 量子比特旋转矩阵的张量积。然后,应用门 𝑅 𝑥,1 (𝜋/4)
摘要:我们从理论上研究了低频光脉冲与拓扑和磁有序两七重层 (2-SL) MnBi 2 Te 4 (MBT) 和 MnSb 2 Te 4 (MST) 中的声子共振的影响。这些材料具有相同的对称性和原始形式的反铁磁基态,但表现出不同的磁交换相互作用。在这两种材料中,剪切和呼吸拉曼声子都可以通过与光激发红外声子的非线性相互作用来激发,使用可以在当前实验装置中获得的强激光脉冲。光诱导的瞬态晶格畸变导致有效层间交换相互作用和磁序的符号发生变化,并伴有拓扑能带跃迁。此外,我们表明,通常存在于 MBT 和 MST 样品中的中度反位无序可以促进这种影响。因此,我们的工作确立了 2-SL MBT 和 MST 作为实现非平衡磁拓扑相变的候选平台。
单钙钛矿量子点的光学驱动巨超级聚束 Ziyu Wang、Abdullah Rasmita、Guankui Long、Disheng Chen、Chutsheng Zhang、Oscar Garcia Garcia、Hongbing Cai*、Qihua Xiong 和 Wei-bo Gau* Z. Wang、A. Rasmita、Prof. G. Long、Dr. D. Chen、C. Zhu、OG Garcia、Dr. H. Cai、Prof. W.-b.高伟斌 物理与应用物理系 南洋理工大学 物理与数学科学学院 新加坡 637371,新加坡 电子邮箱:richard.cai@ntu.edu.sg,wbgao@ntu.edu.sg 龙建军教授 南开大学 材料科学与工程学院 先进材料研究院 天津 300350,中国 熊庆峰教授 清华大学 低维量子物理国家重点实验室、物理系 北京 100084,中国 熊庆峰教授 北京量子信息科学研究院 北京市 100193,中国 高伟斌教授 光子研究所和颠覆性光子技术中心 南洋理工大学 新加坡 637371,新加坡 关键词:单钙钛矿量子点,超聚束,光子对 光子超聚束是光子间强关联的特征,这是一种至关重要的
R.A.辛普森(Simpson),1,2 G.G.Scott,2 D. Mariscal,2 D. Rusby,下午2点King,3,2 E. Grace,4,2 A. Aghedo,5 I. Pagano,3 M. Sinclair,6 C. Armstrong,7 M. J.-E. Manuel,8 A. Haid,8 K. Flippo,9 L. Winslow,1 M. Gatu-Johnson,1 J.A. Frenje,1 D. Neely,7 S. Kerr,2 G.J. 威廉姆斯,2 S.Andrews,2 R. Cauble,2 K. Charron,2 R. Costa,2 B. Fischer,2 S. Maricle,2 B. Stuart,2 F. Albert,2 N. Lemos,2 A. Mackinnon,2 A. Macphee,Macphee,2 A. MacPhee,2 A. Pak,2 A. Pak,2 A. Pak,2 A. Pak,2和T. Ma 2 1)实验室,Livermore,加利福尼亚州94550 3)德克萨斯大学奥斯汀大学,奥斯汀,德克萨斯州奥斯汀78712 4)物理学学院,佐治亚州佐治亚州理工学院,亚特兰大,佐治亚州30332 5)佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州塔拉哈西,FL 32307 6)实验室,DIDCOT OX11 0QX,英国8)General Atomics,La Jolla,加利福尼亚州92093,美国9)Los Alamos National Laboratory,Los Alamos,New Mexico 87545,美国R.A.辛普森(Simpson),1,2 G.G.Scott,2 D. Mariscal,2 D. Rusby,下午2点King,3,2 E. Grace,4,2 A. Aghedo,5 I. Pagano,3 M. Sinclair,6 C. Armstrong,7 M. J.-E. Manuel,8 A. Haid,8 K. Flippo,9 L. Winslow,1 M. Gatu-Johnson,1 J.A.Frenje,1 D. Neely,7 S. Kerr,2 G.J. 威廉姆斯,2 S.Andrews,2 R. Cauble,2 K. Charron,2 R. Costa,2 B. Fischer,2 S. Maricle,2 B. Stuart,2 F. Albert,2 N. Lemos,2 A. Mackinnon,2 A. Macphee,Macphee,2 A. MacPhee,2 A. Pak,2 A. Pak,2 A. Pak,2 A. Pak,2和T. Ma 2 1)实验室,Livermore,加利福尼亚州94550 3)德克萨斯大学奥斯汀大学,奥斯汀,德克萨斯州奥斯汀78712 4)物理学学院,佐治亚州佐治亚州理工学院,亚特兰大,佐治亚州30332 5)佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州塔拉哈西,FL 32307 6)实验室,DIDCOT OX11 0QX,英国8)General Atomics,La Jolla,加利福尼亚州92093,美国9)Los Alamos National Laboratory,Los Alamos,New Mexico 87545,美国Frenje,1 D. Neely,7 S. Kerr,2 G.J.威廉姆斯,2 S.Andrews,2 R. Cauble,2 K. Charron,2 R. Costa,2 B. Fischer,2 S. Maricle,2 B. Stuart,2 F. Albert,2 N. Lemos,2 A. Mackinnon,2 A. Macphee,Macphee,2 A. MacPhee,2 A. Pak,2 A. Pak,2 A. Pak,2 A. Pak,2和T. Ma 2 1)实验室,Livermore,加利福尼亚州94550 3)德克萨斯大学奥斯汀大学,奥斯汀,德克萨斯州奥斯汀78712 4)物理学学院,佐治亚州佐治亚州理工学院,亚特兰大,佐治亚州30332 5)佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州塔拉哈西,FL 32307 6)实验室,DIDCOT OX11 0QX,英国8)General Atomics,La Jolla,加利福尼亚州92093,美国9)Los Alamos National Laboratory,Los Alamos,New Mexico 87545,美国
使用激光驱动离子束的快速点火惯性聚变能 执行摘要 离子快速点火 (IFI) 或由激光驱动离子束引发的聚变快速点火是实现高增益惯性聚变能 (IFE) 的一条有前途的途径 [1,2]。在 IFI 中,首先使用激光或脉冲功率驱动器组装冷的、致密的氘氚 (DT) 燃料。然后,高功率离子束聚焦到燃料内的一小块体积(热点),迅速将燃料加热到发生聚变点火的状态。该热点中的聚变燃烧会传播到热点周围的燃料,导致该燃料的很大一部分燃尽,并且有可能实现惯性聚变能所需的高增益 (G~100)。IFI 对燃料压缩和点火两个基本元素使用单独的驱动器,从而最大程度地控制和优化每个元素。另一方面,传统的激光聚变使用同一驱动器的多束光束来压缩燃料并对其中心进行冲击加热以点燃燃烧波。尽管传统激光聚变取得了令人瞩目的进展,但高增益和 IFE 所需的精确空间对称性、时间脉冲整形和定时仍然是一项尚未解决的严重挑战。过去二十年来,激光离子加速和聚焦方面取得了重大进展,国家点火装置 (NIF) 上演示的 DT 燃料高密度压缩表明了 IFI 概念的基本可行性。作为一种有前途的补充方法,IFI 是一个值得优先研究的方向,因为它为 IFE 的成功提供了一条替代途径,其风险状况与传统激光驱动聚变不同。然而,它利用并促进了许多相同科学和技术的发展。然而,需要进一步的研发投入来解决 IFI 中的关键技术差距。实现离子快速点火的两种不同方法显而易见:使用通过重入锥聚焦到热点的低 Z 离子,以及使用在胶囊外部产生的高 Z 离子。两者都有优点和缺点,需要通过开发燃料组件和点火的点设计进行检查,同时评估各种权衡(例如激光等离子体不稳定性 (LPI) 风险、效率、稳健性)。这种检查将指导定义关键的把关指标,以证明进一步开发的合理性、核心能力的进一步开发以及关键指标的同时实验演示。引言离子快点火可能是高增益惯性聚变能量生产的可行途径 [1,2]。为了实现 IFI,首先使用传统惯性约束聚变 (ICF) 技术(例如激光驱动压缩(直接或间接驱动)或脉冲功率驱动器)将大量氘氚燃料组装成高密度(~500 g/cm 3)。然后,高流离子束,由一个或多个高强度激光束与转换器靶相互作用产生的激光,被导向燃料内的热点体积,以便等容加热热点燃料(即,没有流体动力学