西红柿在各个阶段的生长阶段都容易受到寒冷温度的损害。因此,重要的是要确定可以增强番茄耐受能力的遗传资源和基因。在这项研究中,使用了223个番茄加入的人群来识别植物对冷应激的敏感性或耐受性。对这些加入的转录组分析表明,蔗糖合酶基因家族的成员SUS3是由冷应激诱导的。我们通过过表达(OE)和RNA干扰(RNAI)进一步研究了SUS3在冷应激中的作用。与野生型相比,SUS3 -OE线累积的MDA和电解质泄漏较少,脯氨酸和可溶性糖,维持SOD和CAT的较高活性,降低了超氧化物自由基,在寒冷下造成的膜损伤较少。因此,我们的发现表明SUS3在对冷应激的反应中起着至关重要的作用。本研究表明SUS3可以成为基因工程和改进项目的直接目标,旨在增强番茄作物的冷耐受性。
引言尽管原位肝移植(OLT)是终末期肝脏疾病和某些肝脏恶性肿瘤患者的首选治疗方法,但供体器官短缺仍然是全球健康问题。尽管使用了来自已故供体的次优或“边缘”肝脏的使用,包括老年人死亡后的捐赠,以及肝脂肪变性大于30%,但由于质量较差而丢弃了20%以上的肝脏移植物(1)。此外,边缘肝移植物特别容易受到缺血/再灌注损伤(IRI),这是一种先天免疫驱动的局部炎症反应,这会构成移植物和患者的生存,并使OLT结局恶化(1,2)。因此,除了手术技术,免疫抑制药物方案以及重症监护援助外,供体器官保存对于改善临床结果和扩大可用于救生的供体器官池至关重要。尽管肝脏保存技术最近进行了改进,包括低温氧化灌注,过冷保存和正常热机灌注(NMP)(3-6)(3-6),静态冷藏(SCS)仍然是金标准,因为其简单性和成本效益(7)。实际上,在早期临床试验中,NMP和SCS肝脏保存之间的非抗恒骨胆道狭窄和移植物/患者存活的发生率没有显着差异(6),NMP可以增加90,000美元的$ 90,000,以增加单个OLT程序(8,9)。然而,由于有必要减少冷应力造成的细胞损伤(2、7),因此有必要采用新的减少冷保留型肝细胞损伤的方法。冷器官保存过程中肝窦内皮细胞(LSEC)的损伤代表导致肝IRI的INICAIL关键因素,确定移植物微循环不良,血小板激活,持久性
冷应激对植物的生长,发育和产量产生不利影响。此外,植物物种的空间和地理分布也受到低温的影响。冷应力包括寒冷和/或冷冻温度,这会触发完全不同的植物反应。冻结耐受性是通过冷适应过程获得的,该过程涉及事先暴露于非致命的低温下,然后在细胞膜刚度,转录组,兼容溶质,颜料,色素和冷反应性蛋白(例如抗冻蛋白)中进行了深刻改变。此外,表观遗传机制,例如DNA甲基化,组蛋白修饰,染色质动力学和小型非编码RNA在冷应激适应中起着至关重要的作用。在这里,我们提供了有关冷诱导的信号传导和调节机制的最新更新。重点是表观遗传机制和抗冻蛋白在植物赋予冷应激耐受性中的作用。最后,我们讨论了提高冷容忍和发展冷植物的基因操纵策略。
对温度变化敏感的微生物组的平衡在维持整体健康和降低疾病风险方面起着至关重要的作用。然而,免疫力和微生物群相互作用以适应冷应激的特定机制尚未解决。在这项研究中,选择南江黄山羊作为模型,并在寒冷(冬季,冷应激)和温暖(春季)季节进行采样。对血清免疫因子以及瘤胃和粪便微生物群落的组成进行了分析,以探索在冷应激下微生物群和先天免疫之间的串扰。与温暖季节相比,在寒冷季节观察到IgA水平的显着升高(p <0.01)。相反,在冷应激下,IL-2(p = 0.02)和IL-6(p <0.01)的水平降低。但是,在IgG(p = 0.89),IgM(p = 0.42)和IL-4(p = 0.56)中没有观察到显着差异。虽然在温暖和寒冷的季节之间没有细菌群落多样性的显着变化,但观察到血清IGA,IL-2,IL-6浓度和几个属之间的正相关。此外,加权基因共表达网络分析表明,富含Mebrown模块的微生物群与IgA呈正相关,而微生物群富含Meblue模块与IL-2和IL-6正相关。某些益生菌(包括Alistipes,bacteroides,blautia和prevotellaceae _ucg.004)和IL-2的浓度和IL-6之间的强相关性表明它们在免疫调节特性中的潜在作用。这项研究在冷压力的挑战下对微生物群落和免疫反应之间的串扰提供了宝贵的见解。对这些益生菌的免疫调节特性的进一步研究将有助于发展策略,以增强动物的压力抵抗力,以改善整体健康和生存。
到2050年,预计全球97亿人口将增加粮食需求,特别是对于主食作物。气候变化,随着温度的极大波动,严重影响了在热带和亚热带地区生长的冷敏感亚洲大米(Oryza sativa L.)。因此,了解对冷应激具有独特耐受性的两个亚洲水稻亚种的响应机制对于提高作物的冷耐受而言很重要。因此,这项研究检验了我们的假设,以解决Japonica如何比Indica更好地忍受冷暴露:(1)Japonica有选择地调整抗氧化活性以相反的活性氧(ROS),而Indica迅速提高了抗氧化活性; (2)Japonica增加了抗氧化剂,以防止长时间暴露后的损害,而Indica未能这样做; (3)japonica减慢了吸水,以维持寒冷期间最少的光合作用,而Indica的摄取机制则被损害; (4)泛素化蛋白Osubc7的过表达可提高冷敏感剂的冷耐受性。要检验这些假设,本研究研究了两种不同冷处理下两种亚种采用的酶促抗氧化活性和水吸收策略。结果揭示了管理ROS和抗氧化活性的独特策略,Japonica表现出波动的抗氧化活性,以潜在地激活防御途径,而Indica表现出快速但可能过度且昂贵的ROS清除反应。此外,这项研究探讨了冷候选基因OSUBC7在冷应激反应和生产力中的作用。此外,观察到对比的水吸收模式,与japonica中度下降相比,Indica饰品在寒冷下显着降低,表明相对结果。在冷敏感康复中的OSUBC7过表达通过提高生长速率,糖代谢和叶绿素含量来增强植物对冷应激的韧性,最终有助于更有效的恢复和更高的生存能力。此外,Osubc7显示出潜在的开花和产量参与,这表明在生产力中起着有希望的作用。总而言之,这项工作证明了亚洲水稻亚种对冷压力的复杂反应机制,强调了ROS感知和管理的重要性,吸水策略以及改善冷应激耐受性的遗传因素。这些发现提供了对这两种亚种的自适应策略的见解,并有助于制定有效的策略,以提高波动环境中的作物冷耐受性。
本指令实施 AFI 48-101、航空医学企业、AFI 48-151、热损伤预防计划。它建立了 Tinker 空军基地 (AFB) 的职责和程序,以防止热应激的不利影响。本指令规定了分配到 Tinker AFB 的所有军事和文职人员的政策和职责。它适用于空军预备役和空军国民警卫队,除非另有说明。它不适用于承包商人员。它定义了湿球黑球温度 (WBGT) 指数、WBGT 监测和报告程序、热应激指数、热应激张贴和不寻常的服装规定。在任务必需、应急或紧急行动期间,指挥官可以放弃本指令的规定;但是,当指挥官放弃程序时,他们必须确保所有主管都谨慎行事,确保所有下属人员都知道热损伤症状并采取行动保护其人员的健康。根据 Tinker AFB 的历史天气数据,冷应激的概率非常低。第 72 作战支援中队 (OSS) 气象飞行使用表 3.2。冷应激风险测定,来自 AFI 48-151,用于计算冻伤风险水平。此信息通过指挥所发出以进行安装通知。指挥官/主管应使用 AFI 48-151,表 A2.5“降低冻伤风险的建议预防措施清单”作为冷应激的指导。确保根据本出版物中规定的流程创建的所有记录均按照 AFMAN 33-363《记录管理》进行维护,并按照位于 https://www.my.af.mil/afrims/afrims/afrims 的空军记录处置计划 (RDS) 进行处置。使用 AF 表格 847《出版物变更建议》将建议的变更和有关本出版物的问题提交给主要责任办公室 (OPR);路线
6.3.3.1. 影响视力的因素包括窗户模糊、天气、雾、霾、黑暗、烟雾等、电压过低/白化(灰尘、雪、水、灰烬或其他颗粒物);或当暴露于风中影响个人执行所需职责的能力时。 6.3.3.2. 热/冷应激是当个人暴露于导致表现受损的环境中时的一个因素。 6.3.3.3. 其他车辆/船舶/飞机的灯光是当其他车辆/船舶/飞机的灯光的缺失、模式、强度或位置阻止或干扰安全完成任务时的一个因素。 6.3.3.4. 噪声干扰是当任何与完成任务所需信息不直接相关的声音干扰个人执行该任务的能力时的一个因素。 6.3.3.5. 风(仅限车辆)是当风的强度或方向对车辆的运行产生不利影响时的一个因素。 6.3.3.6. 当湿滑路面条件导致车辆损坏或受伤时,湿滑路面条件是一个因素。注意:不要将此因素用于飞机 SSO。
危险风险分析 4.1 特殊现场条件或关注点 4.2 活动危险分析 4.2.1 “活动危险分析”表 4.3 人身安全 4.3.1 处理桶和容器 4.3.2 电气危险 4.3.2。公用设施 4.3.2.2 地下公用设施 4.3.3 挖掘和沟渠 4.3.4 火灾和爆炸 4.3.5 热应激 4.3.6 冷应激 4.3.7 噪音 4.3.8 滑倒、绊倒和坠落 4.3.9 手动起重 4.3.10 抛射物体和头顶危险 4.3.11 割伤和撕裂伤 4.3.12 使用梯子 4.4 化学危害 4.4.1 有机蒸气暴露评估 4.4.2 皮肤接触和吸收评估 4.5 生物危害 4.5.1 有毒植物 4.5.2 蜱虫 4.5.2.1 莱姆病 4.5.2.2 落基山斑疹热 4.5.2.3 预防4.5.3 蚊媒疾病 - 西尼罗河病毒 4.5.4 黄蜂和蜜蜂 4.5.5 日晒 4.5.6 监督、CAMP、热点去除、脱水
第一部分 引言 3-1. 目的 a. 本章提供预防和治疗冷热应激伤害的指导。本章中包含的信息描述了评估冷热环境条件对岸上、海上和地面部队的影响所必需的物理和生理测量。本文件的目标读者是预防医学和护理可能受到冷热影响的人员的提供者。 b. 海军和海军陆战队健康保护司令部 (NAVMCFORHLTH- PRTCMD) 技术手册 NEHC-TM-OEM 6260.6A《热和冷应激伤害的预防和治疗》包含有关该主题的更详细信息。 3-2. 热应力和应变 a. 热应力是影响身体吸热或散热的多种因素的组合(环境、生理和衣物)。图 3-1 显示了身体如何向周围环境吸热或散热。环境生理学家使用术语“压力”来表示作用于生物系统的力或负荷,使用术语“应变”来表示由此导致的生物系统扭曲。热应力因素包括热、冷、湿度、辐射、空气流动和表面温度。热应变表现为特定的心血管、体温调节、呼吸、肾脏和内分泌反应。3-3. 角色和职责 a. 海上部队:遵循 OPNAVINST 5100.19F 中规定的指导。b. 岸上部队:遵守 OPNAVINST 5100.23H 和职业安全与健康管理局规定(如适用)。根据 MARADMIN 111/15,军官、参谋士官、士官和其他主管应确保海军陆战队、水手和文职人员熟悉热和冷应力伤害预防。
摘要:在拟南芥中,含环的E3泛素连接酶高表达的高响应基因1(HOS1)是冷信号传导的主要调节剂。在这项研究中,进行了第一个外显子中HOS1基因的CRISPR/CAS9介导的靶向诱变。DNA测序表明,由HOS1的基因组编辑引入的固定插入导致出现过早的停止密码子,从而破坏了开放的阅读框架。将获得的HOS1 CAS9突变植物与SALK T-DNA插入突变体(HOS1-3线)进行了比较,就其对非生物胁迫的耐受性,二级代谢产物的积累和参与这些过程的基因表达水平的积累而言。在暴露于冷应激后,在HOS1-3和HOS1 Cas9植物中都观察到了冷响应基因的耐受性和表达。HOS1突变会导致转化细胞中植物甲状腺素合成的变化。葡萄糖醇(GSL)的含量被1.5次下调,而转基因植物中氟乙醇糖苷的上调为1.2至4.2倍。还改变了拟南芥中次级代谢的相应MYB和BHLH转录因子的转录物丰度。我们的数据表明,HOS1调节的下游信号传导与植物甲壳虫生物合成之间存在关系。