巴基斯坦的马铃薯 ( Solanum tuberosum L.) 种植面临挑战,其中由立枯丝核菌 (Rhizoctonia solani Kühn) 引起的黑痂病是一个严重问题。化学杀菌剂等传统方法可以部分控制该病,但缺乏有效的解决方案。本研究探讨了生物肥料和菊科杂草生物质土壤改良剂在控制该病害方面的潜力。选择了两个马铃薯品种 Karoda 和 Sante,并单独或与苍耳生物质一起测试了两种生物肥料 Fertibio 和 Feng Shou。阳性对照中的病害压力最高,化学杀菌剂可显著降低病害压力。苍耳生物质也显著降低了病害发生率。Fertibio 的效果优于 Feng Shou。施用生物肥料和生物质可以改善植物的生理生化特性。块茎重量、光合色素、总蛋白质含量和抗氧化酶(CAT、POX 和 PPO)呈正相关。Fertibio 和 S. marianum 生物质的联合应用可有效控制黑斑病。这些环保替代品可以增强疾病管理和产量。未来的研究应探索它们的成本效益、商业化和安全性。
计划描述:马里兰州能源管理局 (MEA) 2025 财年马里兰州太阳能使用计划 (MSAP,以下简称“计划”)提供补助金,帮助马里兰州居民实现太阳能光伏 (PV) 系统对其家庭的益处。补助金旨在帮助资助这些系统的成本,使马里兰州中低收入、负担过重和服务不足的社区更容易获得这些系统。2 MSAP 是根据马里兰州议会通过的《光明明天法案》(马里兰州 2024 年法案第 595 章)而设立的,这是一项具有里程碑意义的立法,为该州的太阳能建立了许多激励措施和资源。该计划取代了之前的 MEA 住宅清洁能源回扣计划中的太阳能部分,并提供了更有意义的激励措施来提高消费者太阳能光伏系统的可负担性。此外,太阳能光伏承包商必须满足马里兰州太阳能使用计划消费者保护政策的要求,并在 MSAP 参与承包商名单中注册,以便他们安装的太阳能光伏系统有资格获得 MSAP 资助。
摘要:将机器学习(ML)和人工智能(AI)整合到种子科学和技术中代表了农业研究中的变革性范式。这项研究探讨了ML和AI方法的潜力和应用,以增强与种子相关过程的各个方面。从种子生存能力评估到作物产量预测,使用高级算法使人们可以对种子特征有更精确,有效的理解。抽象钻探到了特定的应用中,例如种子育种中的预测性建模,图像识别和数据驱动的决策。通过利用ML和AI的力量,种子科学领域的研究人员和从业人员可以彻底改变传统方法,促进可持续的农业,并确保在不断发展的全球景观中进行粮食安全。
最新的生成人工智能(生成AI)的快速发展对我们所有人都产生了深远的影响,不仅影响了我们的日常生活,还影响了大学内的教育和研究的景观。Tsukuba大学建立为新的概念大学,预计将对学术界内的这种变革性变革开放,采取开放态度,并以创造性和开放的思想态度来塑造可持续的未来社会。在这种情况下,在2023年5月11日,我们发表了“在Tsukuba University使用生成AI的基本政策”,并继续进一步探索这个问题。符合我们通过高级学术追求培养人才的使命,我们现在采取以下方法来先发行生成AI,如下:
结构磁共振成像 (sMRI),尤其是纵向 sMRI,通常用于在阿尔茨海默病 (AD) 临床诊断期间监测和捕捉病情进展。然而,目前的方法忽视了 AD 的渐进性,大多依赖单一图像来识别 AD。在本文中,我们考虑利用受试者的纵向 MRI 进行 AD 分类的问题。为了解决学习纵向 3D MRI 时缺失数据、数据需求和随时间发生的细微变化等挑战,我们提出了一个新模型 LongFormer,它是一种混合 3D CNN 和变压器设计,可从图像和纵向流对中学习。我们的模型可以充分利用数据集中的所有图像,并有效地融合时空特征进行分类。我们在三个数据集(即 ADNI、OASIS 和 AIBL)上评估我们的模型,并将其与八种基线算法进行比较。我们提出的 LongFormer 在对来自所有三个公共数据集的 AD 和 NC 对象进行分类方面取得了最先进的性能。我们的源代码可从 https://github.com/Qybc/LongFormer 在线获取。
“系统,决策和控制研究”(SSDC)(SSDC)涵盖了新的发展和进步,以及最新技术的状态,在广泛感知到的系统,决策和控制的各个领域,毫无疑问,最新,并具有高质量。目的是涵盖与系统,决策,控制,复杂的过程和相关领域相关的艺术状态和未来发展的理论,应用和观点,这些发展嵌入了工程,计算机科学,物理,物理,经济学,社会和生命科学,以及在其背后的帕拉迪格姆和方法论中。The series contains mono- graphs, textbooks, lecture notes and edited volumes in systems, decision making and control spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biolog- ical Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems,经济体系和其他。是简短的出版时间范围以及全球广泛的分布和曝光,可以使研究成果广泛而快速地传播。
迫切需要发现治疗 COVID-19(由 SARS-CoV-2 病毒引起的流行病)的方法。考虑到发现、开发和临床测试的时间表,从库筛选开始的标准小分子药物发现工作流程是不切实际的。为了加快患者测试的时间,我们在此探索了在临床环境中经过一定程度测试的小分子药物(包括已批准的药物)作为 COVID-19 的可能治疗干预措施的治疗潜力。我们这个过程的动机是一个称为多药理学的概念,即可能具有治疗潜力的脱靶相互作用。在这项工作中,我们使用了深度学习药物设计平台 Ligand Design 来查询获得联邦批准或正在进行临床试验的内部小分子药物集合的多药理学概况,目的是识别预计会调节与 COVID-19 治疗相关的靶标的分子。我们努力的成果是 PolypharmDB,这是一种药物资源,以及它们在人类蛋白质组中预测的蛋白质靶标结合。挖掘 PolypharmDB 产生了预测与 COVID-19 的人类和病毒药物靶标相互作用的分子,包括与病毒进入和增殖相关的宿主蛋白以及与病毒生命周期相关的关键病毒蛋白。此外,我们收集了针对两个特定宿主靶标 TMPRSS2 和组织蛋白酶 B 的优先批准药物集合,最近显示它们的联合抑制可以阻止 SARS-CoV-2 病毒进入宿主细胞。总体而言,我们证明了我们的方法有助于快速响应,确定了 30 种优先候选药物,用于测试它们可能用作抗 COVID 药物。使用 PolypharmDB 资源,可以在一个工作日内为新发现的靶标确定重新利用的候选药物。我们正在免费向合作伙伴提供我们确定的分子的完整列表,以便合作伙伴能够对它们的功效进行体外和/或临床测试。关键词:SARS-CoV-2 病毒、COVID-19、冠状病毒、TMPRSS2、组织蛋白酶 B、宿主-靶标、多药理学、脱靶相互作用 缩写:SARS-CoV-2:严重急性呼吸综合征相关冠状病毒 COVID-19:冠状病毒病-2019 3CLpro:木瓜蛋白酶样蛋白酶 PLpro:主要蛋白酶 RdRp:非结构蛋白 ACE2:血管紧张素转换酶 2 TMPRSS2:跨膜蛋白酶丝氨酸 2
佐剂在疫苗和癌症疗法中至关重要,通过各种机制增强了治疗效率。在疫苗中,佐剂传统上是值得放大免疫反应的价值,从而确保了对病原体的强大和持久的保护。在癌症治疗中,佐剂可以通过靶向肿瘤抗原来提高化学疗法或免疫疗法的有效性,从而使癌细胞更容易受到治疗。最近的研究发现了佐剂的新分子水平效应,主要是通过表观遗传机制。表观遗传学包括基因表达中的可遗传修饰,这些修饰不会改变DNA序列,影响诸如DNA甲基化,组蛋白修饰和非编码RNA表达等过程。这些表观遗传变化在调节基因活性,影响免疫途径以及调节免疫反应的强度和持续时间方面起着关键作用。在疫苗或癌症治疗中,了解佐剂与表观遗传调节剂的相互作用如何为在各种医疗领域开发更精确的细胞靶向疗法提供显着潜力。本综述深入研究了佐剂的不断发展的作用及其与表观遗传机制的相互作用。还研究了利用表观遗传变化以增强辅助效率的潜力,并探讨了在治疗环境中表观遗传抑制剂作为辅助剂的新颖使用。
我们使用生成式人工智能从超过 120,000 份企业电话会议记录中提取管理层对其经济前景的预期。总体衡量标准人工智能经济评分可以稳健地预测短期和未来 10 个季度的未来经济指标,例如 GDP 增长、生产和就业。这种预测能力是现有衡量标准(包括调查预测)的增量。此外,行业和公司层面的衡量标准提供了有关特定行业和个别公司活动的宝贵信息。整合管理层对公司、行业和宏观经济状况的预期的构成衡量标准进一步显著提高了对国家和部门 GDP 增长的预测能力和预测范围。我们的研究结果表明,管理层预期对经济活动具有独特的见解,对宏观经济和微观经济决策都有影响。