OHB-ITARIA S.P.A领导的财团正处于土星B期(合成孔径雷达立方体形成飞行)的B期,这是意大利航天局(ASI)计划的一部分,促进了下一代意大利立方体的发展。土星是一个示范任务,该任务采用了多个输入 - 型号输出(MIMO)技术,该技术应用于配备合成孔径雷达(SAR)进行地球观察的一群立方体。MIMO基于合作的主动传感器,每个传感器都会传输信号并接收与整个群体相关的照明的公共区域反向散射,从而增加了测量性能,趋势近似于传感器数量的平方。完整的土星星座具有16个迷你群(3个立方体中的每一个),分布在4个SSO上,同样间隔了3个小时的当地时间。星座旨在提供1.5 h的平均重访时间和全球1天的干涉重访时间。该演示任务的目的是验证在3个立方体的小型sar上应用于SAR的MIMO技术,在低地的底部朝阳同步轨道上紧密地形成。使用OHB-I的M 3多任务模块化平台,配备了Aresys S.R.L.开发的小型SAR仪器和空中客车意大利S.P.A.,我们的任务能够在30 km的缝隙中实现5x5 m的分辨率。
抽象目的 - 本文的目的是研究使用激光粉末床融合(LPBF)制造的镍含量(NITI)部分对镍含量(NITI)部分的均匀性的影响。此外,已经研究了制造参数和不同的熔融策略的影响,包括多个重新粘贴周期,可打印性和宏缺陷,例如孔隙和裂纹形成。设计/方法/方法 - 使用LPBF工艺来制造元混合粉末的NITI合金,并通过使用重新制定的扫描策略来评估改善制造标本的均匀性。此外,还使用了单一熔体和最多两个遥控器。发现 - 结果表明,重新升压可能对改善密度以及化学和相组成均匀化是有益的。扫描电子显微镜中的反向散射电子模式显示,在没有粘合的Ni和Ti元素粉末的情况下,响应增加了遥远的数量。所研究熔体的NITI零件的微值值相似,范围为487至495 HV。尽管如此,观察到的测量误差会随着遥控器的增加而降低,表明化学和相组成均匀性的增加。然而,X射线衍射分析揭示了多个阶段的存在,而与熔体运行的数量无关。独创性/价值 - 首次使用了作者的知识,使用重新放置扫描策略,通过LPBF制造了基本混合的NITI粉末。
●具有低温和元素分析能力的透射电子显微镜(TEM):配备了Gatan Crotansfer持有者和牛津仪器能量色散X射线光谱仪(EDS)的JEOL JEEL JEM-2100(EDS)。●具有低温和元素分析能力的扫描电子显微镜(SEM):Zeiss Sigma-VP现场发射SEM配备了可变压力,次级电子,透镜和反向散射检测器,Gatan Alto Alto低温制备和加载模块,以及Oxford Encellorments Energy Instruments Energy Encellocts Energy Enstruments Energy Enstruments Energy Enstruments X-Ray Epperersive x-Ray Eppesermate(Eds)。●X射线衍射(XRD):Rigaku X射线衍射仪Ultima IV。●共聚焦拉曼显微镜(CRM):WITEC Alpha 300 R配备有电动XYZ阶段用于大面积摄入,两个激发激光波长(785和532 nm)和10倍至100倍的目标。●高意见筛选系统(HCS):Perkin Elmer Opera Phanix高通量共聚焦荧光显微镜。●傅立叶变换红外光谱仪和显微镜(FTIR):Shimadzu Irtracer-100 FTIR光谱仪,配备了固体和液体的衰减总反射(ATR),适用于传输和反射测量,并与Aimadzu AIM-9000 Microftir系统相结合。●X射线荧光(XRF):Shimadzu EDX-8100 XRF系统,用于粉末,散装和液体样品的元素分析。大气,真空和氦测量值低检测极限。
引言超声超声(每秒> 5000帧)在过去20年中的出现,通过增加的计算能力和平行接收电子设备来实现,刺激了生物医学超声的multiple成像模式的发展(1,2)。在短(<1 ms)的时间窗口内的完整图像的形成可以准确地量化组织,血液和对比度运动。这促进了组织弹性和动脉刚度的测量(3,4),通过定位和跟踪单个微泡(5,6)的序列分辨率(5,6),并在广泛的视野(7)上大大增强了血液的成像。后者导致功能性超声成像(FUS或FUSI)的出现,一种神经影像学技术,能够检测到神经血管偶联引起的脑血容量的小变化(8,9)。与其他神经影像模式(例如功能磁共振成像)相比,FUS在较低的成本下提供了更大的易用性,同时提供了更高的时空重置,并且最近的演示与对比度相结合,可与6.5- spatial spatialssolution(10)相结合,以检测其能力。超声超声成像主要仍然是二维(2D)技术。此成像过程需要以高框架速率(≥5kHz)的一系列平面或分化波传输,同时记录以nyquist速率在空间和时间上采样的反向散射信号(1)。在3D成像的情况下,通常需要数千个元素(2D成像为64至256)和具有相关射频数字数字的相应数量的独立数据通道。最近的工作报告了3/4D心脏想象的1024个通道系统(11,12),超分辨率(13,14)和大鼠的功能成像(15)。但是,这些需要使用和同步
1.词汇和缩写 遥感和地理信息系统领域积累了大量技术词汇和短语以及首字母缩略词。这些列在本报告的开头,以供参考并帮助理解后面的讨论。吸收:从辐射光谱中去除能量。反照率:从表面反射的入射光的百分比。相当于反射率。反太阳点:从观察者的角度来看,与太阳正对的位置;潜在的阴影位置。球面上与太阳成 180 度的点。方位角:倾斜表面朝向的方位角。姿态:观景台(例如飞机)的方向。方位角:水平方向角,0 度 = 北,90 度 = 东,等等。反向散射:辐射大致朝源方向的反向偏转。波段:与特定波长范围有关。波段组合:用于可视化或计算的一组波段。波段比率:将一个图像波段除以另一个图像波段,以减少阴影效果并增强差异。BGR:蓝-绿-红;显示色带的顺序;与 RGB 顺序相反。黑体:不反射辐射的全吸收体。注意:在热平衡中,黑体的吸收和辐射速率相同;当保持热平衡时,辐射将刚好等于吸收。这个假设的物体由足够数量的分子组成,这些分子发射和吸收电磁波谱所有部分的电磁辐射,因此所有入射辐射都被完全吸收,并且在所有波长带和所有方向上,都能实现最大可能的发射。CAD:计算机辅助设计;一组点、线、多边形、形状、文本,通常没有矢量的严格拓扑规则。校准:将数值调整为标准参考。
抽象目标:事先研究证明了用于确定乳腺肿瘤患者治疗反应的定量超声(QU)的实施。从肿瘤区域定量的几个QU参数与患者的临床和病理反应显着相关。在这项研究中,我们旨在确定是否存在使用乳腺异种移植模型(MDA-MB-231)的超声刺激的微泡(USMB)和高温(HT)引起的QUS参数与肿瘤形态变化之间存在这种联系。方法:用USMB和HT的排列处理严重合并免疫兼具小鼠的后腿生长的肿瘤。使用25 MHz阵列换能器从乳腺肿瘤的小鼠之前和24小时治疗中收集超声射频数据。Result: Our result demonstrated an increase in the QUS parameters the mid-band fi t and spectral 0-MHz intercept with an increase in HT duration combined with USMB which was found to be re fl ective of tissue structural changes and cell death detected using haematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labelling stain.在60分钟的HT持续时间内观察到了QUS光谱参数的显着降低,这可能是由于大多数细胞损失了核的损失,因此使用组织学分析确认。肿瘤内的形态改变可能导致反向散射参数的减少。结论:这里的工作使用QUS技术来评估癌症治疗的效率,并表明超声反向散射的变化反映了组织形态的变化。
将稀释的需要二氮浓度掺入传统的III – V合金中会产生带隙能量的显着减少,从而在菌株和带隙工程中带来了独特的机会。然而,宿主基质的理想生长条件与替代二氮的理想生长条件之间的差异导致这些III – V – BI合金的材料质量落后于常规III – V半导体的材料。INSB 1 x BI X虽然在实验上尚未进行,但由于INSB和III – BI材料的理想生长温度相对相对相似,因此是高质量III – V – BI合金的有前途的候选者。通过识别高度动力学上有限的生长状态,我们通过分子束外延展示了高质量INSB 1 x BI X的生长。X射线衍射和Rutherford反向散射光谱法(RBS)测量合金的二晶浓度,并与光滑的表面形态结合,通过原子力显微镜测量,表明Unity-sticking Bismuth掺入了从0.8%到1.5%到1.5%的bismuth浓度,均为0.8%至1.5%。此外,从INSB 1 x BI X中观察到了第一次光致发光,并在230 K时显示了高达7.6 L m的波长延伸,二匹马诱导的带隙还原为29 MeV/%bi。此外,我们报告了INSB 1 x BI X的带隙的温度依赖性,并观察到与传统III – V合金相一致的行为。提出的结果突出了INSB 1 x BI X作为访问Longwave-Infrared的替代新兴候选者的潜力。
2019年,罗伯特·阿尔法诺(Robert Alfano)获得了SPIE(光学仪器工程师协会)金牌奖,这是该协会授予的最高荣誉。罗伯特·阿尔法诺(Robert Alfano)是一位意大利裔美国人实验物理学家。他是纽约市城市学院和纽约大学研究生院的杰出科学与工程学教授,他还是Ultrafast Spectroscoscopy and Lasers研究所的创始主任(1982)。他是生物医学成像和光谱,超快激光器和光学元件,可调激光器,半导体材料和设备,光学材料,生物物理学,非线性光学和光子学的先驱;他还从事纳米技术和连贯的反向散射工作。他发现白光超脑激光器是光学相干断层扫描的根源,它正在打破眼科,心脏病学和口腔癌检测的障碍(请参阅“与多键OCT的更好分辨率,第28页”),以及其他应用。他发起了现在被称为光学活检的领域。他最近计算得的,他在职业生涯中为CUNY带来了价值6200万美元的资金,平均每年170万美元。他说,他已经通过“撞到人行道”来实现这一壮举。他养成了积极接触资金并使他们对他的工作感兴趣的习惯。alfano除了诸如光学通信,固态物理学和计量学之类的领域外,还发现了进一步生物医学光学的发现。Alfano在生物医学仪器开发方面取得了出色的记录。在700多种研究文章,102份专利,几本编辑的卷和会议记录中,他对光子学的贡献记录在案中,并引用了10,000多个引用。他拥有45份专利,仅在生物医学光学区域发表了230多种文章。他发现白光超脑激光器是光学连贯性层析成像的根源,它正在打破眼科,心脏病学和
代谢异常,例如糖尿病和肥胖症,会影响骨骼数量和/或骨骼质量。在这项工作中,我们在结构和组成方面表征了骨骼材料的特性,在新型的大鼠模型中,具有先天性瘦素受体(LEPR)缺乏症,严重的肥胖症和高血糖(2型糖尿病样的疾病)。股骨和来自20周龄的雄性大鼠的钙瓦里亚(顶部区域)被检查以探测由内软骨内和膜内骨化形成的骨骼。与健康对照相比,当通过微型计算的X射线断层扫描(Micro-CT)分析时,LEPR缺陷的动物在股骨微体系结构和钙形态学上显示出显着改变。特别是,骨体积减小的股骨较短,结合较薄的顶骨和较短的矢状缝合线,指向LEPR缺陷啮齿动物的骨骼开发延迟。另一方面,LEPR缺陷的动物和健康的对照表现出类似的骨基质组成,通过微观CT进行了组织矿物质密度,通过微CT的组织矿物质密度评估,通过数量的反向散射电子成像矿化程度,以及从拉曼低估图像中突破的各种指标。一些特定的微观结构特征,即股骨中的矿化软骨岛和顶骨的高矿化区域,在两组中也显示出可比的分布和特征。总体而言,尽管骨基质成分正常,但LEPR缺陷动物的骨微结构改变表明骨质质量受损。延迟的发育也与具有先兆LEP/LEPR缺乏症的人类的观察者一致,这使该动物模型成为转化研究的合适候选者。
摘要:奥氏体347H不锈钢提供了极端操作条件(例如高温)所需的出色的机械性能和耐腐蚀性。由于组成和过程变化而导致的微观结构的变化有望影响其特性。识别微观结构特征(例如晶界)因此成为过程微观结构 - 循环中的重要任务。应用基于卷积神经网络(CNN)的深度学习模型是一种强大的技术,可以自动以自动化方式从材料显微照片中检测特征。与微观结构分类相反,分割任务的监督CNN模型需要像素的注释标签。但是,分割任务的图像的手动标记为在合理的时间范围内以可靠且可重复的方式生成培训数据和标签的主要瓶颈。尤其是,要通过更换合金组成来更快的材料发现,需要加快微观结构表征。在这项研究中,我们试图通过利用多模式显微镜直接生成标签而不是手动标记来克服此类局限性。我们将347H不锈钢的扫描电子显微镜(SEM)作为训练数据和电子反向散射衍射(EBSD)显微照片作为晶粒边界检测作为语义分割任务的像素标签。通过考虑一组深CNN体系结构来评估我们方法的生存能力。此外,我们发现幼稚的像素分割会导致较小的间隙和预测的晶界图中缺少边界。我们证明,尽管在两种模式之间的数据收集过程中产生了仪器漂移,但该方法在使用手动标记的类似分割任务中执行了相当的性能。通过在模型训练期间合并拓扑信息,晶粒边界网络和分割性能的连通性得到改善。最后,通过对下游任务的准确计算来预测潜在的谷物形态分布,这是微观结构表征的最终感兴趣。