Chih Hung Lo 1,#, * 1 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore 2 School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore 3 Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58893, México 4 School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, México # 同等贡献 *通讯作者:Chih Hung Lo,博士 (chihhung.lo@ntu.edu.sg) Víctor M. Baizabal-Aguirre,博士 (victor.baizabal@umich.mx)关键词 TNFR1 信号传导,受体特异性抑制、构象动力学、非竞争性抑制、变构机制、药物发现、肽抑制剂、抗炎摘要肿瘤坏死因子 (TNF) 受体 1 (TNFR1) 在介导 TNF 诱导的信号通路和调节炎症反应中起关键作用。最近的研究表明,TNFR1 活化涉及配体前组装受体二聚体的构象重排,而靶向受体构象动力学是调节 TNFR1 信号的可行策略。在这里,我们结合使用生物物理、生化和细胞分析以及分子动力学模拟来表明抗炎肽 (FKCRRWQWRMKK)(我们称之为 FKC)通过改变受体二聚体的构象状态来变构抑制 TNFR1 活化,而不会阻断受体-配体相互作用或破坏受体二聚化。我们还通过展示该肽抑制 HEK293 细胞中的 TNFR1 信号传导并减轻腹膜内 TNF 注射小鼠的炎症来证明 FKC 的功效。从机制上讲,我们发现 FKC 与 TNFR1 富含半胱氨酸的结构域 (CRD2/3) 结合并扰乱受体激活所需的构象动力学。重要的是,FKC 增加了受体二聚体中 CRD2/3 和 CRD4 的开放频率,并诱导受体胞质区域的构象开放。这会导致抑制构象状态,阻碍下游信号分子的募集。总之,这些数据为靶向 TNFR1 构象活性区域的可行性提供了证据,并为受体特异性抑制 TNFR1 信号传导开辟了新途径。意义
1 趋化因子信号传导组,免疫学和肿瘤学系,国家生物技术中心/CSIC,坎托布兰科校区,28049,马德里,西班牙。 2 林雪平大学卫生、医学和护理科学系诊断和专科医学科,58185,林雪平,瑞典。 3 玛格丽塔萨拉斯生物研究中心(CIB-CSIC),28040,马德里,西班牙。 4 生物计算部门,国家生物技术中心(CNB-CSIC),Cantoblanco 校区,28049 马德里,西班牙。 5 西班牙马德里公主大学医院(IIS-Princesa)健康研究所免疫学系,28006。 6 加拿大安大略省汉密尔顿市麦克马斯特大学施罗德过敏和免疫学研究所麦克马斯特免疫学研究中心 (MIRC) 医学系,邮编 L8S 4L8。 7 弗朗西斯科维多利亚大学(UFV)实验科学学院,28223,马德里,西班牙。 8 B 淋巴细胞动力学,免疫学和肿瘤学系,国家生物技术中心 (CNB)/CSIC,坎托布兰科校区,28049,马德里,西班牙。 9 神经退行性疾病生物医学研究网络中心(CIBERNED),卡洛斯三世健康研究所,28029 马德里,西班牙 10 X 射线晶体学部门,大分子结构系,国立生物技术中心/CSIC,坎托布兰科校区,28049,马德里,西班牙。 * 通讯作者:Mario Mellado,西班牙马德里 28049 Cantoblanco, Darwin 3,CNB/CSIC 免疫学和肿瘤学系。电话:(+34)91/585-4852;传真:(+34)91/372-0493;邮箱: mmellado@cnb.csic.es
注意:EZH1,增强Zeste同源物1。ezh2,增强Zeste同源物2。eed,胚胎外胚层的发育。suz12,zeste 12的抑制器。H3K27,赖氨酸的组蛋白H3 27。右 - 使用弹弓[Street等。Bolis等人的RNASEQ数据集上的 BMC基因组学(2018)。 nat Comm(2021),Yun等。 Oncotarget(2017),Liu等。 nat Comm(2020)。 PRC2靶基因:87基因多孔抑制特征,源自转移性前列腺肿瘤[Yu等。 癌症Res(2007)]。BMC基因组学(2018)。nat Comm(2021),Yun等。Oncotarget(2017),Liu等。 nat Comm(2020)。 PRC2靶基因:87基因多孔抑制特征,源自转移性前列腺肿瘤[Yu等。 癌症Res(2007)]。Oncotarget(2017),Liu等。nat Comm(2020)。PRC2靶基因:87基因多孔抑制特征,源自转移性前列腺肿瘤[Yu等。癌症Res(2007)]。癌症Res(2007)]。
我们确定了生化测定中A-005结合对TYK2调节(JH2)和激酶(JH1)域的亲和力。在商业激酶面板中评估了化合物的效力和选择性。在人外周血单核细胞(PBMC),全血和小胶质细胞中评估了该化合物对免疫细胞活性的影响。脑脊液(CSF)暴露,并在大鼠中进行微透析,以评估化合物越过血脑屏障的潜力。最后,我们评估了该化合物对小鼠EAE临床体征的影响。› A-005是一种高度有效的变构小分子TYK2抑制剂,预计将在2024年初进行人类临床试验。› A-005抑制人类全血,PBMC和小胶质细胞的TYK2途径激活。›大鼠的一项微透析研究显示了A-005越过血脑屏障的能力。› A-005在预防或治疗时降低EAE临床评分。› PH1临床试验中的剂量水平预计将在中枢神经系统和外围实现完全靶标的抑制作用。
基于互补氢键碱基配对的核酸高度复杂的分子识别能力导致了 DNA 纳米技术研究领域的迅猛发展。1 通过控制 DNA 杂交和结构以响应诸如 DNA/RNA 结合、pH 变化和光照射等刺激,已经创建了大量 DNA 纳米设备、传感器和分子机器。2 金属离子也可用作外部刺激来调节 DNA 结构和功能,特别是通过利用金属介导的非自然碱基配对。3 通过与桥接金属离子络合,两个相反的配体型核碱基类似物之间形成金属介导的人工碱基对。金属介导的碱基配对通常可以稳定 DNA 双链,从而以金属依赖的方式控制 DNA 杂交。为了通过金属络合有效地切换 DNA 功能,我们最近建立了一种新的概念,即双面 5-修饰嘧啶核碱基的金属介导碱基对切换。 4 – 7 双面碱基,如 5-羟基尿嘧啶 ( U OH ) 4,5 和 5-羧基尿嘧啶 ( caU ) 6 被设计成在金属介导的自碱基对 (例如, U OH – Gd III – U OH ) 中形成
这是接受出版的同行评审纸的PDF文件。尽管未经编辑,但内容已受到初步格式。自然正在为排版纸的早期版本作为我们的作者和读者的服务。文本和数字将在本文以最终形式发表之前进行复制和证明审查。请注意,在生产过程中可能会发现可能影响内容的错误,并且所有法律免责声明都适用。
•脚手架抑制剂与蛋白酶抑制剂有所不同:•对NF K B-依赖性肿瘤生长的有效和广泛抑制作用•HST-1021与BTKI或BCL2I结合使用的强大增强的抗肿瘤作用•无TREG DEG DEGETION DEGETION DEGETION
19个评估患者; 95%CI 0-15.8%)。 患者有部分反应。 响应时间为56周。 患者继续接受紫脂蛋白,直到急性吻合性炎的发展为先前的手术并发症和紧急住院治疗。 戒断阿洛菲尼治疗导致第79周(在阿洛菲尼停产后一个月)复发,这通过活检和随后的组织学检查证实。 DOR为18.53个月。 射线照相确认稳定疾病的速率为63.2%(19例患者中有12例; 95%CI 42.1-84.2%)。 DCR为68.4%(19例患者中有13例; 95%CI 47.4-89.5%),疾病进展率为31.6%(19例患者中有6例; 95%CI 10.5-52.6%)。 在研究中未发现反应或疾病控制的剂量依赖性(以50 mg/m2的剂量发现了部分反应,同伙1-5的疾病控制率为100%,66.7%,66.7%,66.7%,19个评估患者; 95%CI 0-15.8%)。患者有部分反应。响应时间为56周。患者继续接受紫脂蛋白,直到急性吻合性炎的发展为先前的手术并发症和紧急住院治疗。戒断阿洛菲尼治疗导致第79周(在阿洛菲尼停产后一个月)复发,这通过活检和随后的组织学检查证实。DOR为18.53个月。射线照相确认稳定疾病的速率为63.2%(19例患者中有12例; 95%CI 42.1-84.2%)。DCR为68.4%(19例患者中有13例; 95%CI 47.4-89.5%),疾病进展率为31.6%(19例患者中有6例; 95%CI 10.5-52.6%)。在研究中未发现反应或疾病控制的剂量依赖性(以50 mg/m2的剂量发现了部分反应,同伙1-5的疾病控制率为100%,66.7%,66.7%,66.7%,
磷酸肌醇 3-激酶 (PI3K)/AKT 轴在癌症发展中起着关键作用 (1, 2),约 14% 的癌症 (3, 4) 中发生 PI3K α 致癌基因变异。这些突变遍布整个 PIK3CA 基因,但在螺旋 (E542K、E545K) 和激酶 (H1047R/L) 结构域的热点氨基酸位点高度富集 (3, 5),尽管 PI3K α 热点突变的频率因癌症而异 (6)。PI3K α 突变在乳腺癌中最为常见,发生在约 36% 的患者中,其中约 28% 为螺旋结构域突变,40% 为激酶结构域突变 (7)。突变型 PI3K α 也是其他难治性癌症的常见致癌驱动因素,包括胃癌 (15%)、结肠癌 (25%)、头颈部鳞状细胞癌 (HNSCC;13%) 和子宫癌 (45%;参考文献 3、8、9)。 PI3K α 异构体选择性抑制的临床益处已在 PI3K α 突变型癌症中得到证实。 Alpelisib 是一种正构抑制剂,对野生型 (WT) 和突变型 PI3K α 均具有同等抑制作用。
ABCG2是一种ATP结合盒转运蛋白,它导出了多种异种生物化合物,并被认为是癌细胞中多药耐药性的因素。底物和与ABCG2的相互作用进行了广泛的研究,并且已经开发出了小分子抑制剂,以防止从肿瘤细胞中输出抗癌药物。在这里,我们探索了靶点位点以外的抑制剂的潜力。我们开发了针对ABCG2的新型纳米化,并使用功能分析选择了三种抑制性纳米型(NB8,NB17和NB96),通过单个粒子冷冻电子显微镜进行结构研究。我们的结果表明,这些纳米结合在变构与核苷酸结合域的不同区域结合。NB8的两个副本与NBD的顶点结合,以防止它们完全关闭。NB17在转运蛋白的两倍轴附近结合,并与两个NBD相互作用。NB96与NBD的侧面结合,并固定与与ATP结合和水解相关的关键基序连接的区域。所有三种纳米体都阻止了转移者经历底物运输所需的构象变化。这些发现提高了我们对外部粘合剂调节ABCG2的分子基础的理解,这可能会促进新一代抑制剂的发展。此外,这是通过纳米剂对人多药耐药转运蛋白进行调节的第一个例子。2023作者。由Elsevier Ltd.这是CC下的开放式访问文章(http://creativecom- mons.org/licenses/4.0/)。