虽然小海王星样行星是最丰富的系外行星之一,但我们对它们大气结构和动态的理解仍然很少。尤其是,关于潮湿对流在这些大气中的工作方式,在这些气氛中,可凝度的物种比不可固定的背景气体重。虽然已经预测,潮湿对流可能会停止以上这些可凝结物种的阈值丰度,但该预测基于简单的线性分析,并依赖于关于大气饱和的一些有力的假设。为了调查这个问题,我们开发了一个3D云分辨模型,用于具有大量可冷凝物种的氢气大气,并将其应用于原型的温带Neptune样星球 - K2-18 b。我们的模型证实了在可凝结蒸气的临界丰度之上抑制湿对流的抑制作用,以及在此类行星大气中稳定分层层的发作,这导致了更热的深层气氛和内部。我们的3D模拟进一步提供了该稳定层中湍流混合的定量估计,这是大气中浓缩物循环的关键驱动力。这使我们能够构建一个非常简单但逼真的1D模型,该模型捕获了Neptune类气氛结构的最显着特征。我们关于氢气中潮湿对流行为的定性发现超出了温带行星,还应适用于铁和硅酸盐在氢压行星深内部的凝聚的区域。我们发现地球需要具有很高的反照率(a>0。5--0。最后,我们使用模型研究了K2-18 b上H 2域大气下的液体海洋的可能性。6)维持液态海洋。但是,由于恒星的光谱类型,提供如此高的反照率所需的气溶胶散射量与最新的观测数据不一致。
截至2023年中,至少正在开发十个任务或计划在未来20年中探索金星。大多数强调大气化学和表面/内部科学目标,只有少数直接解决了金星作为主要科学目标的过去和现在的可居住性。所有的任务都采用了以前经过经过测试的平台 - 轨道和一般大气探针,但(截至迄今为止)没有计划使用寿命更长的大气平台(例如气球或飞艇)或着陆器。因此,关于金星的几个关键问题必然会在当前的开发任务浪潮之后仍未得到答复,这将从2029年开始探索金星,并在整个2030年代继续进行。这个面向未来的观点概述了一个主要的科学问题,即维纳斯的下一个任务应该解决,以便更好地理解地球作为一个系统,并为金星类似外行星提供可靠的比较基础,这些比较基础只能通过远程观察来调查,例如詹姆斯·韦伯太空电视(James Webb Space Telescope)(James Webb Space Telescope)(J. J. J. J. J. J. J.这一下一代的金星任务可能需要长期生活的大气平台,或者在不同高度,更长的地表站,以及最终的大气/云颗粒(气溶胶)的样品和表面返回地球实验室。Although ideas for aerial platforms, long-lived landers, and missions to return atmospheric and surface samples are being conceptualized at present to be ready for upcoming international competed opportunities (e.g., NASA, ESA, ISRO, JAXA), they await further investment in technologies to provide the combination of scienti fi c measurement capabilities and fl ight-system performance to make the breakthroughs that the community will expect, guided by长期以来的科学重点。
2. 电力系统:放射性同位素电力推进 (REP):利用钚-238 等同位素自然放射性衰变产生的热量来发电。REP 系统紧凑可靠,是小型到中型任务的理想选择,尤其是在可以接受长时间运行和低功率要求的情况下。它们通常提供 1 千瓦范围内的功率,足以为科学仪器和低推力推进系统(如离子发动机)供电。旅行者号、好奇号和毅力号等著名任务已成功展示了该技术和任务可靠性。裂变电力推进 (FEP):它们依靠核反应堆通过受控核裂变反应发电。与 REP 不同,FEP 系统可以产生更高的功率,通常在 8-10 千瓦之间,是前往谷神星、木卫一、土卫六和木卫二等潜在目的地的先驱无人任务的理想选择。与传统卫星相比,FEP 系统具有可扩展性和灵活性,可承载更大的有效载荷并缩短运输时间。研究表明,人们正在积极研究它们,以用于未来的载人火星任务和外行星探索,而长期高功率需求至关重要。将这项技术集成到先进的航天器中可以帮助航天器运行更长时间。3. 航天器裂变动力的主要优势:[1] 更高的功率输出:与传统的太阳能或化学动力系统相比,裂变动力系统可提供更高的功率水平,使高能科学仪器、先进的推进系统和栖息地支持系统能够运行,用于多行星和深空载人任务。[2] 高功率任务的成本效益:对于需要功率输出超过 1 kWe 的任务,裂变系统比放射性同位素动力系统更具成本效益。这使它们成为具有大量能源需求的长期任务的理想选择。[3] 高功率需求的低质量:当功率要求超过
上下文。在空间光度光曲线中,恒星浮标丰富。由于现在有足够大的数量可用,因此对其整体时间形态的统计研究是及时的。目标。我们使用来自过渡系系外行星调查卫星(TESS)的光曲线来研究超出持续时间和振幅的简单参数化的恒星曲线的形状,我们揭示了与天体物理参数的可能联系。方法。我们训练并使用了FlatWrm2长期记忆神经网络,以从任务的第一年(部门1-69)中找到2分钟Cadence Tess Light曲线中的恒星曲线。我们将这些浮雕缩放到可比的标准形状,并使用主成分分析以简洁的方式描述其时间形态。我们调查了平流如何按主序列变化,并测试了单个浮雕是否持有有关其宿主恒星的任何信息。我们还使用极端紫外线辐照时间序列也将相似的技术应用于太阳浮游。结果。我们的最终目录在约14 000星上包含约120 000台。由于严格的过滤和最终的手动审查,该样本几乎没有误报,尽管以降低完整性为代价。使用此量为目录,我们检测到平均量的依赖性是光谱类型的形状。这些变化对于单个浮华而言并不明显。它们只有在平均成千上万事件时才出现。我们发现在平面空间中没有强烈的聚类。我们创建了新的分析量是不同类型的恒星的模板,并且我们提出了一种采样现实浮游的技术,以及一种定位具有相似形状的浮标的方法。the the the the the the the the the提取的平流是形状,用于训练flatwrm2的数据公开可用。
2021 年 5 月 17 日至 21 日,由空间科学研究所 (SSI) 数据科学中心 (CDS) 主办、美国国家科学基金会 (NSF) 赞助的完全虚拟会议“统计方法和机器学习在空间科学中的应用”举行 (http://spacescience.org/workshops/mlconference2021.php)。此次活动汇集了空间科学各个学科(如太阳物理学和高空物理学、行星和系外行星科学、地质学、天体生物学和天文学)和行业的专家,以利用统计学、数据科学、人工智能 (AI) 方法和信息理论方面的进步,旨在利用这些领域的海量数据改进分析模型及其预测能力。这次多学科会议为行业专业人士、高级科学家、早期职业研究人员和学生提供了一个充满活力的论坛,让他们使用各种高级统计学技术和方法展示他们的最新成果,以增强他们对人工智能最新趋势的了解,并参与未来合作的平台。会议涵盖了广泛的研究主题,例如高级统计方法、深度学习和神经网络、时间序列分析、贝叶斯方法、特征识别和特征提取、结合机器学习(ML)技术的物理模型和代理模型、空间天气预报和应用人工智能的其他领域的研究主题、模型验证和不确定性量化、空间等离子体中的湍流和非线性动力学、物理信息神经网络、信息论以及数据重建和数据同化。自 20 世纪 90 年代以来,人工智能方法已经应用于日地物理领域的各种问题( Newell 等,1991 ;Lundstedt,1992 ;Lundstedt,1996 ;Wintoft 和 Lundstedt,1997 ;Wing 等,2005 ;Lundstedt,2006 )。其中包括极光粒子沉降的分类、太阳风速度的预测、地磁扰动和行星 K 指数 K p ,用于表征
摘要:先进镜面技术开发 (AMTD) 项目为期 6 年,旨在完善 4 米或更大的单片或分段紫外/光学/红外空间望远镜主镜组件所需的技术,用于一般天体物理和系外行星任务。AMTD 采用科学驱动的系统工程方法。从科学要求开始,推导出主镜孔径、面密度、表面误差和稳定性的工程规范。影响最大的规范可能是每 10 分钟 10 pm 的波前稳定性。六项关键技术取得了进展:(1) 制造大孔径低面密度高刚度镜面基板;(2) 设计支撑系统;(3) 校正中/高空间频率图形误差;(4) 减轻段边缘衍射;(5) 调整段间间隙;(6) 验证集成模型。 AMTD 成功展示了一种制造尺寸达 1.5 米、厚度达 40 厘米的基板的工艺,该工艺通过堆叠多个核心元件并将它们低温熔合在一起来实现。为了帮助预测在轨性能并协助架构贸易研究,为两个镜子组件(由 AMTD 合作伙伴 Harris Corp. 制造的 1.5 米超低膨胀 (ULE ® ) 镜子和 Schott North American 拥有的 1.2 米 Zerodur ® 镜子)创建了集成模型。X 射线计算机断层扫描用于构建 1.5 米 ULE ® 镜子的“竣工”模型。通过在相关的热真空环境中测试全尺寸和子尺寸组件来验证这些模型。© 作者。由 SPIE 根据知识共享署名 4.0 未本地化许可证出版。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。 [DOI:10.1117/1.JATIS.6.2.025001]
虽然小的海王星样行星是最丰富的系外行星之一,但我们对它们大气结构和动态的理解仍然很少。尤其是,许多未知数仍然存在于潮湿对流在这些大气中的工作方式,在这些气氛中,可凝结物种比不可接触的背景气体重。虽然已经预测,潮湿对流可能会在这些可凝结物种的某些阈值以上关闭,但该预测基于简单的线性分析,并依赖于对大气饱和度的一些强烈假设。为了调查这个问题,我们为具有大量浓缩物种的氢为主大气开发了一个3D云解析模型,并将该模型应用于原型温带海王星样星球 - K2-18 b。我们的模型证实了潮湿的对流的关闭,高于浓缩蒸气的临界丰度,并在此类行星的大气中稳定地分层层的发作,从而导致了更热的深层气氛和内部。我们的3D模拟进一步提供了该稳定层中湍流混合的定量估计,这是大气中浓缩物循环的关键驱动力。这使我们能够构建一个非常简单但现实的1D模型,该模型捕获了Neptune样气氛结构的最显着特征。我们关于氢气中潮湿对流行为的定性发现超出了温带行星,还应适用于铁和硅酸盐在氢压行星深内部的凝聚的区域。我们发现地球需要具有很高的反照率(a>0。5--0。最后,我们使用我们的模型研究了在K2-18 b上h 2主导的大气下的液体海洋的可能性。6)维持液态海洋。但是,由于恒星的光谱类型,提供如此高的反照率所需的气溶胶散射量与最新的观测数据不一致。
摘要。直接对地球系外行星的直接成像是下一代地面望远镜最突出的科学驱动因素之一。通常,类似地球的系外行星位于与宿主恒星的小角度分离,这使得它们的检测变得困难。因此,必须仔细设计自适应光学(AO)系统的控制算法,以将外部行星与宿主恒星产生的残留光区分开。基于数据驱动的控制方法,例如增强学习(RL),可以改善AO控制的有希望的研究途径。rl是机器学习研究领域的一个活跃分支,其中通过与环境的互动来学习对系统的控制。因此,RL可以看作是AO控制的一种自动方法,在该方法中,其使用完全是交钥匙操作。特别是,已显示基于模型的RL可以应对时间和错误注册错误。同样,它已被证明可以适应非线性波前传感,同时有效地训练和执行。在这项工作中,我们在ESO总部的基于GPU的高阶自适应光学测试台(Ghost)测试台上实施并调整了称为AO(PO4AO)的策略优化的RL方法,在实验室环境中我们证明了该方法的强劲性能。我们的实施允许平行执行训练,这对于天上的操作至关重要。,我们研究了该方法的预测性和自我校准方面。我们为实施开放量有据可查的代码,并指定RTC管道的要求。除了硬件,管道和Python接口潜伏期外,还仅引入了幽灵运行Pytorch的新实现。我们还讨论了该方法的重要超参数以及它们如何影响该方法。此外,本文讨论了潜伏期的潜伏期的来源以及较低潜伏期实现的可能路径。
行星科学 3,120.4 3,200.0 3,383.2 3,265.8 3,246.1 3,350.8 3,389.7 行星科学研究 309.0 -- 307.4 333.3 352.0 360.2 386.4 行星科学研究与分析 221.3 -- 224.6 249.3 261.5 267.4 290.3 其他任务与数据分析 87.8 -- 82.8 84.0 90.5 92.8 96.2 行星防御 166.0 137.8 250.7 337.7 400.5 299.6 79.0 NEO 勘测者 110.0 90.0 209.7 296.7 358.5 257.6 39.0 其他任务和数据分析 56.0 -- 41.0 41.0 42.0 42.0 40.0 月球发现和探索 478.8 -- 458.5 459.0 460.5 472.0 483.3 VIPER 112.2 97.2 61.3 33.0 -- -- -- 其他任务和数据分析 366.5 -- 397.2 426.0 460.5 472.0 483.3 发现号 331.8 -- 247.5 386.4 426.0 579.2 625.9 灵神号 163.8 109.3 57.7 34.5 34.5 37.1 15.4 DAVINCI 12.4 -- 55.8 173.0 201.2 268.6 213.0 VERITAS 14.4 -- 1.5 1.5 1.5 1.5 1.5 其他任务和数据分析 141.1 -- 132.5 177.5 188.8 272.0 396.0 New Frontiers 283.7 -- 407.5 447.8 386.1 367.3 337.5 Dragonfly 219.1 400.1 327.7 355.5 274.8 207.7 24.8 其他任务和数据分析 64.6 -- 79.9 92.3 111.3 159.6 312.7 火星探索 265.0 -- 268.6 279.2 311.6 315.3 367.2 其他任务和数据分析 265.0 -- 268.6 279.2 311.6 315.3 367.2 火星样品返回 653.2 822.3 949.3 700.0 600.0 612.1 627.6 外行星和海洋世界 484.3 -- 318.4 121.3 134.8 178.3 321.9 木星 木卫二 472.1 345.0 303.3 100.8 80.6 77.7 84.0 其他任务和数据分析 12.2 -- 15.1 20.6 54.2 100.6 237.9 放射性同位素功率 148.6 -- 175.5 201.1 174.6 166.8 160.9
附录 - 其他有用信息 NASA 任务理事会 航空研究任务理事会 NASA 的航空创新者多年来取得的成果直接惠及当今的航空运输系统、航空业以及每天依赖这些飞行进步的乘客和企业。因此,每架美国商用飞机和美国空中交通管制塔都使用 NASA 开发的技术来提高效率和保证安全。 https://www.nasa.gov/directorates/armd/ 探索系统发展任务理事会 探索系统发展任务理事会负责管理月球轨道、月球表面和火星探索的载人探索系统开发。阿尔忒弥斯任务将开启月球科学发现和经济机会的新时代,同时验证操作和系统并为载人火星任务做准备。该理事会的项目包括太空发射系统火箭、猎户座飞船、地面支持系统、载人着陆系统、宇航服和 Gateway。 https://www.nasa.gov/exploration-systems-development-mission-directorate/ 科学任务理事会 科学任务理事会是一个组织,在这里,一个科学学科的发现可以直接通向其他研究领域。这种流动非常有价值,在科学界很少见。从系外行星研究到更好地了解地球气候,再到了解太阳对地球和太阳系的影响,该理事会的工作是跨学科和协作的。 https://science.nasa.gov/ 空间作业任务理事会 空间作业任务理事会保持人类在太空的持续存在,造福地球人类。该理事会下属的项目是 NASA 太空探索工作的核心,通过通信、发射服务、研究能力和机组人员支持,支持阿尔忒弥斯、商业空间、科学和其他机构任务。 https://www.nasa.gov/directorates/space-operations/ 空间技术任务理事会 技术推动探索和太空经济。NASA 的空间技术任务理事会旨在改变未来的任务,同时确保美国在航空航天领域的领导地位。该理事会开发、演示和转让有利于 NASA、商业和其他政府任务的新太空技术。https://www.nasa.gov/space-technology-mission-directorate/