有一个显着的理论性旨在理解制造诱导的缺陷对单层石墨烯的操作行为的影响。这些研究主要集中在原子缺陷上,而在合成过程中,纳米级针孔和厚度附着在单层石墨烯上的两个层(双层)的斑块是不可避免的。在这项工作中,通过非平衡分子动力学模拟研究了这些纳米级缺陷对石墨烯热导率的影响。单层锯齿形和面向扶手椅的热导率的导热度是建模的,以捕获空隙和双层缺陷的影响。分析具有50 nm×10 nm尺寸的单层石墨烯片,其椭圆形缺陷为6 nm(主要轴)。我们的结果显示,随着温度的升高,导热率降低了20%以上,随着空隙尺寸的增加约75%。单层石墨烯的热导率的降低为15%,双层缺陷的直径为6 nm。这项研究表明,缺陷形状对石墨烯的导热性产生了巨大影响,与圆形相比,用椭圆形的缺陷表明石墨烯的热传递更高。这项工作提供了如何量化制造诱导缺陷对石墨烯导热率的影响的指南。
众所周知,纳米流体在其热和转移特性方面与传统传热液显着不同。CO 2传输特性的两个,其导热率和粘度对于改善油的检索方法和工业制冷至关重要。通过将分子模型与各种机器学习算法相结合,本研究预测了氧化铁CO 2纳米流体的传导特征。可以通过应用机器学习方法,例如决策树,k-neareast邻居和线性回归来评估这些传输参数估计值的准确性。预测这些转移质量需要知道纳米颗粒体积的大小,比例和温度的比例。为了确定特征,分子动力学模拟是使用大尺度原子进行的。建立了一个间和vari内部功能的皮尔逊相关性,以确认输入变量依赖于M和导热率。最终使用确定的统计系数确认了结果。对于各种温度范围,体积分数和纳米颗粒尺寸,该研究发现,决策树模型是预测纳米流体传输参数的最佳方法。它的成功率为99%。关键词:导热率,粘度,机器学习,纳米流体,
摘要:单壁碳纳米管(SWCNT)和底物之间的界面热电导很少被表征和理解,这是由于在探测跨这样的NM范围接触的能量传输方面的重大挑战。在这里,我们报告了<6 nm厚的SWCNT束和Si底物之间的界面热电导。用于测量能量传输状态分辨的拉曼,其中拉曼频谱在连续波(CW)下变化,并测量20 ns脉冲激光加热,用于在稳定和短暂的热传导下通过界面热导电持续的稳定和短暂热传导的热响应。由于样品的激光吸收和温度升高不需要知识,因此测量可以实现极端的能力和置信度。在SWCNT束的三个位置中,测量界面热电阻为(2.98±0.22)×10 3,(3.01±0.23)×10 3,以及(1.67±0.27)×10 3 K M W - 1,对应于范围内的热电导率(3.3-3-6.0-×10)。我们的分析表明,SWCNT束和SI基板之间的接触松散,这主要归因于样品的明显不均匀性,这是通过原子力显微镜和拉曼光谱法解决的。对于假定的接触宽度约为1 nm,界面热电阻的阶将为10-6 W m-2 k-1,与报告的机械去角质石墨烯和二维(2D)材料一致。
提出了数学模型,以检查可变的热物理特性(例如热传导,滑动效应和粘度)对麦克斯韦纳米流体的影响。由于存在纳米颗粒,例如金属,碳化物,氧化物等,导热率迅速增加。基础流体。流量是从停滞的点传递的,经过一张带有滑动条件的拉伸板。还考虑了布朗运动的特征以及嗜热过程。通过相似性变换,从影响流体流动的方程式减少了ODE。MATLAB的内置求解器,即BVP4C,它是实现Lobatto IIIA有限差数值方法的搭配公式,以数值求解这些转换的方程。分析了不同参数对流体运动的变化影响,热量转移以及质量的影响的数值结果的图。这项研究导致了一个重要方面,随着流动中的热导率的加剧,流体的温度会降低,而纳米颗粒在板表面附近的高聚集中会降低。此外,由于麦克斯韦液的松弛,热量和质量转移耗尽的速率。此外,当前数值计算的有效性是通过对热和质量转移速率进行比较与先前的分析结果的比较来确定的,该结果的嗜热和prandtl参数值的几个值。其成果的有效性可以用于纳米科学技术和聚合物行业的发展。关键字:传热;流体粘度可变;滑动效应;可变的导热率; Maxwell Fluid PAC:47.50.-D,47.15.cb,47.11.-J,44.20。+B,65.80.-G,82.60.qr,47.57.ng,82.35.np,83.50,83.50,65.20.-W,83.60.bc,83.60.bc,83.60.dff
1北京国家凝结物理实验室,物理研究所,中国科学院,北京学院,北京100190,中国2,剑桥大学CB2 1PZ,英国剑桥大学工程系3剑桥大学CB2 1PZ,剑桥大学,剑桥大学,剑桥大学CB3 0fa,UK 4 Inccelite pareclale parrigge cyb3 Paris-Saclay, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay, 91190, Gif-sur-Yvette, France 5 Echion Technologies, Cambridge CB22 3FG, UK 6 Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK 7 Dipartimento di Fisica e Astronomia, Universita' di Catania, Catania 64 95123, Italy † Present address: School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK ‡ Present address: School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin D02 E8C0, Ireland ⊥ Present address: Jaguar Land Rover, Banbury Road Gaydon, Lighthorne Heath, Warwick CV35 0RR, UK
设计用于锂离子电池电池的温度控制需要了解其组件的热性能。的特性,例如热容量,导热率和热扩散率,表征了细胞内单个和复合材料的热传递。这些参数对于开发电池热模型和设计热管理系统至关重要。可以通过热扩散率和热容量测量来确定薄色组件的热导率,例如电极中使用的电导率。这项工作探讨了测量覆盖在薄铜电流收集器上的电池阳极材料的热导率的方法。这些测量中获得的结果对于电池热管理系统的开发,优化和设计很重要。
与焊接或锡焊相比,导热胶可以粘合铜和铝等难以粘合的材料组合。这些胶粘剂可填充缝隙,大面积导热,并且耐水、耐油或耐气。由于胶粘剂在室温或中等温度下固化,因此粘合过程中不会产生机械应力、不必要的变形或变色。
该复合材料可以注塑或挤出,并且根据所选的基质聚合物,也可以进行机械加工。此外,它可以通过压制高度压实,并通过轧制和压延加工成薄层可层压中间体。例如,复合材料可用于功能化组件,其中导电或导热性将通过集成工艺实现,例如双组分注塑或共挤出。作为电缆护套或外壳的全表面应用,可以实现与金属材料相当的屏蔽衰减(300kHz-1.2GHz 时为 80-90dB)。
透明的导电氧化物(TCO)薄膜是许多光电应用中的基石,包括显示器,光伏和触摸屏。在这些设备中,需要同时具有较高光学反式差异和电导率的薄膜。理想情况下,在正常设备操作期间产生的热量必须理想地补偿以实现最佳功能。解决热人类生物问题的一种可能方法是将热电(TE)属性添加到TCO膜中。然而,在保持最佳电导率和光学透明度的同时提高了TE性能是具有挑战性的:热和电运输特性已深深交织在一起。在这里,我们演示了一种方法,可以独立选择光学透明度,电导率和导热率。嵌入的纳米图案结构充满了二锡氧化物(ITO),并将其夹在两个ITO层之间。所得的三层结构表现出降低的导热率和出色的电导率。这是通过嵌入的ITO纳米模式中的电子通道来实现的,该纳米模式在电气连接顶部和底层的情况下,同时限制了声子介导的热传导。调整纳米图案的填充分数和厚度以提高光学传输,从而获得高于裸露膜的透明度。结果是透明的TCO三层层膜,具有同时高的TCO和功绩的热电图。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。