英国研究人员使用CRISPR/CAS作为NGT小麦的工具。科学家已经开发了一种称为Tegnesis的新突变程序。它在植物中的两种化学物质的帮助下动员了如此被称为的跳跃基因(转座子),因此旨在加速植物对应激条件的适应。用Tgenenesis处理的相应的冬小麦希望从秋天和选择线的抗态线上生长大农镜。瑞士联邦环境办公室的批准仍在审理中。瑞士Allianz Gentech-Frei除了应用程序中的技术缺陷以及可能的利益外,还批评了测试经理发明了专利的方法,并共同创立了一家公司以进行独家营销。上周,瑞士议会的16名国会议员向国家议会提交了询问。
Kary Niyaziy Str., 39, 100000,塔什干,乌兹别克斯坦。电子邮件:1 rbaratov@mail.ru,2 himolaxonsunnatillayevna@gmail.com,3 mustafoali777@gmail.com。摘要:本文介绍了一种用于在生长季早期检测小麦植物疾病的智能系统。所提出的智能系统可以在早期检测三种类型的小麦疾病,特别是黄锈病、白粉病和斑枯病,并通过在患病植物上局部喷洒有害化学物质来显著改善土壤和生态。所提出的诊断程序是用 C++ 编程语言编写的。智能系统的基本结构包括 Raspberry PI 4 MODULE、Logitech HD Pro Webcam C920、蜂鸣器、HC-SR04 距离传感器、直流电机驱动器、交流电机、电源、继电器和一些数字设备。
《小麦之书》第二版与原版相比略有改动。第一版各章节的作者中有些已经离职或无法再修订其贡献。第二版的编辑和作者对原贡献者表示感谢,尤其是编辑第一版的 Michael Perry 和 Brian Hillman。第二版中的一些章节是原章节的修订版,在这些情况下,原作者会在每章开头致谢。书中增加了一些关于杂草管理、谷物质量、营销、硬粒小麦、饲料小麦和小黑麦的新章节或部分,并且有几章的内容得到了相当大的扩展。所有章节都进行了修订,以在适用的地方包含新信息。《小麦之书》第一版读者的反应表明,主要用户包括顾问、公司农学家、本科生、机械公司的技术专家、种子商和化肥公司以及小麦种植者。因此,我们决定将第二版的重点从“小麦生产者技术手册”略微改为“小麦生产原则和实践”,以适应更广泛的用户群体。谷物研究与开发公司资助了第二版的印刷费用。大多数作者受雇于西澳大利亚农业部,大多数作者都做出了贡献
摘要 传统农业导致化学品的广泛使用,进而对环境造成负面影响,如土壤侵蚀、地下水污染和大气污染。农业系统应该更加可持续,以实现经济和社会盈利以及环境保护。一种可能的解决方案是采用精准农业,这是一种双赢的选择,既能维持粮食生产,又不会破坏环境。精准技术用于收集有关田间空间和时间差异的信息,以便将投入与特定地点的田间条件相匹配。在这里,我们回顾了有关小麦作物精准氮管理的报告。目的是对小麦地点特定氮管理的方法和结果进行调查,并分析这种农业实践的性能和可持续性。在此背景下,我们分析了过去 10 到 15 年的文献。主要结论是:(a)在做出氮管理决策之前,需要测量和了解土壤的空间变异性和小麦氮状况。不同传感器的互补使用以相对较低的成本改善了土壤特性评估; (b)结果表明,机载图像、遥感和近距传感对于通过响应性季节内管理方法预测作物氮素状况非常有用;(c)红边和近红外波段可以穿透冠层的较高植被部分。这些
摘要 在两个农业季节中,进行了一项田间试验,以量化本地细菌接种剂对不同氮 (N) 施肥量下小麦作物生长、产量和品质的影响。小麦在实验技术转移中心 (CETT-910) 的田间条件下播种,该中心是来自墨西哥索诺拉州亚基谷的代表性小麦作物区。试验采用不同剂量的氮 (0、130 和 250 kg N ha −1 ) 和细菌联合体 (BC) (枯草芽孢杆菌 TSO9、B. cabrialesii subsp. tritici TSO2 T 、枯草芽孢杆菌 TSO22、B. paralicheniformis TRQ65 和 Priestia megaterium TRQ8) 进行。结果表明,农业季节影响叶绿素含量、穗大小、每穗粒数、蛋白质含量和全麦粉黄度。在施用 130 和 250 kg N ha −1(常规氮肥剂量)的处理中,叶绿素和归一化植被指数 (NDVI) 值最高,冠层温度值较低。氮肥剂量影响小麦黄色浆果、蛋白质含量、十二烷基硫酸钠 (SDS) 沉降量和全麦粉黄度等品质参数。此外,在 130 kg N ha −1 的施用量下,施用本地细菌联合体可使穗长和每穗粒数增加,从而提高产量(与未接种处理相比,每公顷增产 1.0 吨),且不影响谷物品质。总之,使用这种细菌联合体有可能显著促进小麦生长、产量和品质,同时减少氮肥施用,从而为提高小麦产量提供一种有前途的农业生物技术替代方案。
谷物是人类最重要的食物来源。其中,面包小麦是世界上种植最广泛的作物,从总产量来看,仅次于大米,而大麦是第四大重要谷物。现代谷物作物固有的狭窄遗传多样性与其庞大复杂的基因组相结合,此前造成了遗传瓶颈,阻碍了育种进展以及生物技术中新开发的应用。长读测序技术的改进不断增强我们生成超连续染色体规模组装的能力,从而进一步提高基因分离的效率并揭示谷物作物物种进化的机制。尽管测序成本和生物信息学创新不断下降,但使用靶向富集方案和等位基因重测序的基因分型测序 (GBS) 是目前生成大型 SNP 数据集最具成本效益的方法。本《植物科学前沿》研究合集包含 16 篇文章,重点介绍了将多染色体规模基因组参考图组装与数量遗传学新方法相结合所带来的广泛实用性,以最大限度地利用有利的遗传性状变异。
摘要:气候变化在未来的未来中对小麦生长构成了新的威胁。需要探索这些威胁,以确保可持续的小麦生产。为此,使用从不同水平的灌溉和氮剂量进行的实验的数据校准了盐模型。根据均方根误差(RMSE)的值,归一化的均方根误差(NRMSE),确定系数(r 2)和残留质量(CRM)系数评估盐模型的性能,范围为0.23-1.82,0.23-1.82,0.23-1.82,0.91-0.17,0.91-.17,0.91 - 0.93和0.01-0.93和0.01-01-2-2。 0.31–1.89,0.11–0.31,0.87–0.90和-0.02–0.01,分别用于验证。对未来气候生长的未来气候场景的预测表明,到本世纪末,在RCP4.5场景下,在RCP8.5场景下播种了九天,而在RCP8.5的场景下,播种日期,而收获日期则在RCP4.5和21岁以下的RCP8.5下播种。因此,在RCP4.5下,在RCP8.5的RCP4.5和十八天下,整个农作物持续时间缩短了15天。进一步的模拟显示,在RCP4.5下,小麦产量下降了14.2%,在RCP8.5下,小麦产量下降了14.2%。在RCP4.5下,干物质减少了14.9%,而RCP8.5下降了23.3%。在RCP4.5下,灌溉额预计将增加14.9%,在RCP8.5下增加18.0%;在RCP4.5下,水生产率预计将在RCP8.5下降低25.3%,直到世纪末。假设的情况表明,在RCP4.5下,增加氮多于额外的20–40%可以提高小麦产量和干物质10.2-23.0%和11.5–24.6%,分别为RCP8.5,分别为12.0–23.4%和12.9-23.4%和12.9-29.6%。这项研究提供了对气候变化对未来小麦生产的影响的宝贵见解,因此政策制定者可以制定有效的应急计划,并由利益相关者采用以提高小麦生产率。
热浪变得越来越频繁和强烈(Météo-France,2020)。炎热天数(温度超过25°C)的总数正在上升,而霜冻天数正在减少(Ministèredela la the thecologique et de lacohésiondes territoires,2023年)。此外,法国受到干旱的强烈影响,尤其是在该国南部。自1960年代以来,受干旱影响的地区份额已从5%增加到10%(国际能源局,2022年)。例如,法国大陆96个部门中有71个受到2022年干旱的影响,这是自1976年以来最干燥的一月至8月期(世界气象组织,2023年)。这些热量和干旱条件的结合也有助于法国发生大型野火(世界气象组织,2023年)。
本研究研究了滞后受精技术对巴基斯坦小麦生产的影响,强调了了解和减轻农业方法的环境影响的需求。本研究的基本目的是使用1990年至2020年的时间序列研究施肥和其他因素对巴基斯坦小麦生产的影响。CO2从受精(CO2EF)发出的使用IPCC指南提供的默认值估算。 ARDL方法分析了CO2EF,技术水平,能源使用,农业用地和农业劳动对小麦生产的短期和长期影响。 结果表明,所有因素在短期内和长期长期内都显着影响巴基斯坦的小麦产量为1%和5%。 这些发现表明,减少二氧化碳,技术水平,能源利用,农业用地和农业生产的农业劳动力可以帮助增加巴基斯坦的小麦产量。 这项研究还强调了采用可持续有效的饮食实践,探索替代性肥料以及使用农作物旋转系统来对氮肥,能源使用,能源使用和技术使用产生的碳发电的不利影响的重要性。 这些措施可以促成巴基斯坦更具可持续性和气候的农业部门。使用IPCC指南提供的默认值估算。ARDL方法分析了CO2EF,技术水平,能源使用,农业用地和农业劳动对小麦生产的短期和长期影响。结果表明,所有因素在短期内和长期长期内都显着影响巴基斯坦的小麦产量为1%和5%。这些发现表明,减少二氧化碳,技术水平,能源利用,农业用地和农业生产的农业劳动力可以帮助增加巴基斯坦的小麦产量。这项研究还强调了采用可持续有效的饮食实践,探索替代性肥料以及使用农作物旋转系统来对氮肥,能源使用,能源使用和技术使用产生的碳发电的不利影响的重要性。这些措施可以促成巴基斯坦更具可持续性和气候的农业部门。
小麦(Triticum aestivum)是全球重要的粮食作物,含有碳水化合物以及其他重要营养成分,如蛋白质、少量脂质、维生素、矿物质以及植物化学物质[1]。膳食纤维是碳水化合物低聚物和聚合物,它们不易被人体小肠消化吸收,从而导致在人体大肠中部分或完全发酵[2]。全麦谷物含有9%到20%的膳食纤维,膳食纤维的主要成分是细胞壁多糖,主要是阿拉伯木聚糖和(1,3;1,4)-β-D-葡聚糖(β-葡聚糖),分别占总膳食纤维的约70%和20%[3]。此外,小麦粒中的膳食纤维还含有抗性淀粉,这种淀粉在小肠中不被消化,能够相对不变地到达大肠和结肠[4]。