2024 年 4 月 26 日 支持考虑 COVID-19 疫苗抗原组成的证据 下面突出显示的数据是 TAG-CO-VAC 审查和考虑的代表性数据示例,用于为 COVID-19 疫苗组成建议提供信息,包括: (1) SARS-CoV-2 基因进化; (2) 使用动物抗血清或人血清的病毒中和试验对以前和新出现的 SARS-CoV-2 变体进行抗原表征,并使用抗原制图进一步分析抗原关系; (3) 使用动物和人血清的目前批准的疫苗抗原针对循环 SARS-CoV-2 变体引起的中和抗体反应广度的免疫原性数据,包括建模数据; (4) 在 XBB.1 和 JN.1 谱系循环期间,目前批准的疫苗的疫苗有效性估计值 (VE); (5) 感染循环 SARS-CoV-2 变体后免疫反应的初步免疫原性数据;以及 (6) 疫苗制造商与 TAG-CO-VAC 秘密共享的具有更新抗原的候选疫苗性能的初步临床前和临床免疫原性数据(未显示数据)。TAG-CO-VAC 召集了一个由具有病毒学和免疫学专业知识的成员和顾问组成的小组。小组还审查和考虑了下面突出显示的数据。TAG-CO-VAC 和小组审查的未发表和/或机密数据未显示。
人类 MHC 抗原被称为 HLA,因为它最初是在白细胞中描述的(人类白细胞抗原)。HLA 合成由位于人类第 6 条染色体短臂上的基因提供。这些基因中的三个 - HLA-A、HLA-B 和 HLA-C - 编码 MHC I 类蛋白。一些 HLA-D 基因座编码 II 类 MHC 蛋白(DP、DQ 和 DR)。III 基因座位于 I 和 II 基因座之间。编码补体的两个成分(C2 和 C4)的基因位于此基因座中。因此,MHC 分子主要分为两类。I 类 MHC 在所有核细胞中表达,II 类 MHC 主要在免疫活性细胞的表面表达。在整个人类群体中,没有具有相同 MHC 抗原的个体,换句话说,所有人的这些抗原都不同。但是,单卵双胞胎以及基因克隆是例外。因此,在组织移植时,需要考虑这些抗原的相容性(相对相容性)。MHC抗原是位于细胞膜上的糖蛋白。一些MHC片段与免疫球蛋白具有同源结构。
肽亚单位疫苗通过降低脱靶反应风险和提高诱导适应性免疫反应的特异性来提高安全性。然而,大多数可溶性肽的免疫原性通常不足以产生强大而持久的免疫力。已经开发了许多用于肽抗原的生物材料和运载工具,以在保持特异性的同时改善免疫反应。肽纳米簇 (PNC) 是一种亚单位肽疫苗材料,已显示出增加肽抗原免疫原性的潜力。PNC 仅由交联肽抗原组成,并且已由长度小至 8 个氨基酸的几种肽抗原合成。然而,与许多肽疫苗生物材料一样,合成需要在肽中添加残基和/或共价接合抗原表位内的氨基酸以形成稳定的材料。为实现生物材料的结合或形成而进行的抗原修饰的影响很少被研究,因为大多数研究的目标是将可溶性抗原与生物材料形式的抗原进行比较。本研究调查了 PNC 作为平台疫苗生物材料,以评估肽修饰和具有不同交联化学性质的生物材料形成如何影响表位特异性免疫细胞呈递和活化。通过从模型肽表位 SIINFEKL 脱溶合成了几种类型的 PNC,该表位源自免疫原性蛋白卵清蛋白。SIINFEKL 被改变以在每个末端包含额外的残基,这些残基是经过战略性选择的,以便能够将多种结合化学选项掺入 PNC。使用了几种交联方法来控制使用哪些功能组来稳定 PNC,以及交联的可还原性。评估了这些变体在体内免疫后的免疫反应和生物分布。与单独的未修饰可溶性抗原相比,所有修饰抗原制剂在掺入 PNC 时仍会诱导相当的免疫反应。然而,一些交联方法导致所需免疫反应显著增加,而另一些则没有,这表明并非所有 PNC 的处理方式都相同。这些结果有助于指导未来的肽疫苗生物材料设计,包括 PNC 和各种共轭和自组装肽抗原材料,以最大化和调整所需的免疫反应。
在本研究中,GA 患者和对照者之间的 HLA 抗原分布没有统计学上的显著差异。人类组织相容性抗原 HLA-8 8 和 HLA-Bw 15 在胰岛素依赖型糖尿病中数量增加 (7)。因此,本研究的结果不能支持局部性 GA 与胰岛素依赖型糖尿病之间存在关联的理论。我们的研究结果证实了 F1iedman Birnbaum. Haim. Gideone & Barzilai (4) 在一组小规模患者 (11 = 13) 中的最新观察结果。至于在斯堪的纳维亚半岛罕见的全身性 GA。他们在 19 名 HLA-Bw 35 患者中发现显著相关性。这可能表明全身性 GA 与糖尿病之间存在联系。此前碳水化合物耐受性研究已提出这一观点 (5)。需要进一步研究来阐明这种关联。
在发表的文章中,有一个错误。在方法部分中已经确定了与靶向矢量构建以进行同源重组的描述有关的印刷错误。对材料和方法进行了校正,4.3构造靶向向量以用于胚胎干细胞中的同源重组。这句话先前指出:“同源臂是通过从C57BL/6N小鼠基因组DNA克隆来分离的。在C57BL/6N小鼠ES细胞中生成了针对特定的CD3 G,CD3 D和CD3 E细胞外结构域基因的三个靶向载体。对于CD3 G靶向载体,通过DNA合成将人性化嵌合CD3 G cDNA引入了鼠外显子3中。在3'人源化盒中插入了loxp-抗呼吸毒素的抗性盒。对于CD3 D靶向载体,通过DNA合成将人性化嵌合CD3 D cDNA引入鼠2。在3'的人源化盒中插入了FRT抗抗霉素的耐药盒。对于CD3 E靶向载体,通过
呼吸系统持续暴露于外界,使其容易受到空气中的颗粒和有害病原体(如细菌和病毒)的影响,可以通过呼吸进入。抗原呈递细胞(APC)在对T细胞的抗原并启动适应性免疫细胞的反应时,在先天免疫反应中具有至关重要的功能。专业的APC吞噬外来微生物,并使用MHC分子向T淋巴细胞展示其肽。MHC II在其细胞表面上,并可能呈现与CD4 + T细胞的抗原。此外,各种其他类型的细胞具有相似的功能,也可以通过表达MHC II来充当APC,从而影响肺部疾病的进展,例如肺泡上皮细胞(AEC),内皮细胞(ECS),内皮细胞(EC),成纤维细胞,先天性淋巴样细胞(ILCS),分裂,卵形,卵形,卵形,卵形,卵形,卵形,卵形,卵形,分裂,分裂,分裂,分裂,分裂层。表达MHC II并存在抗原。非专业APC类型及其提供的额外信号对CD4 + T细胞编程和下游效应器机制有直接影响。在这里,我们总结了有关MHC II在不同肺部疾病中非专业APC的表达的现有研究及其对CD4 + T分化类型和疾病结果的影响,以进一步阐明MHC II在不同非专业APC中的作用
嵌合抗原受体(CAR)T细胞是“活药物”,通过抗体衍生的结合结构域特异性地识别其靶抗原,从而导致T细胞激活,扩展和销毁同源靶细胞。FDA/EMA CAR T细胞用于治疗B细胞恶性肿瘤的批准将CAR T细胞疗法确立为现代免疫疗法的新兴支柱。然而,几乎每名接受CAR T细胞疗法的患者在第一年内都患有疾病复发,这被认为是由于癌细胞上的CAR靶抗原的下调或丢失,以及功能能力降低,称为T细胞耗尽。在汽车激活阈值下方的抗原下调使T细胞保持沉默,使CAR T细胞疗法无效。使用CAR T细胞用于治疗越来越多的恶性疾病,尤其是实体瘤的疾病,需要增强汽车敏感性以在癌细胞上低密度的靶向抗原。在这里,我们讨论了即将到来的策略和当前设计汽车以识别抗原低癌细胞的挑战,旨在提高敏感性和最佳治疗性效率,同时降低肿瘤复发的风险。
OSANG LLC:FDA 于 2023 年 9 月 26 日批准 OHC COVID-19 抗原自我检测保质期延长 18 个月至 24 个月
摘要 背景 癌症疫苗的目标是诱导对肿瘤抗原的强烈 T 细胞反应,但癌症疫苗的递送方法、时间表和配方尚未优化。佐剂可增强对疫苗抗原的免疫反应。然而,人们对佐剂加抗原及其递送时间表对疫苗部位微环境 (VSME) 中的免疫环境的影响知之甚少。我们假设抗原加工和呈递可能直接发生在 VSME 中,添加 Toll 样受体 3 (TLR3) 激动剂多聚 ICLC (pICLC) 将增强免疫激活标志物,并且在同一皮肤部位重复接种疫苗会进一步增强免疫特征,而不是在不同皮肤位置接种多种疫苗。方法 使用 RNA 测序,我们评估了接受皮下/皮内肽疫苗接种黑色素瘤的患者的 VSME 活检,使用不完全弗氏佐剂 (IFA) 加或不加 pICLC。使用 R 进行差异基因表达分析和基因集富集分析。错误发现率校正 p 值 <0.05 被认为是显著的。结果我们发现在 IFA 中添加肽抗原可增强抗原呈递途径和 VSME 局部的三级淋巴结构基因特征。与单独使用 IFA + 肽相比,在 IFA + 肽中添加 pICLC 在注射 1 周后诱导了免疫学上有利的 VSME,但对三次注射后的 VSME 影响不大。重复在同一部位注射 IFA + 肽抗原诱导的 VSME 具有比在不同旋转皮肤位置注射诱导的 VSME 更多的树突状细胞活化、Th1 优势和 TLR 衔接蛋白基因表达。结论这些数据表明,疫苗接种部位本身可能是对疫苗免疫至关重要的位置,而不仅仅是引流淋巴结,IFA 诱导有利的 VSME,其中 TLR 激动剂在疫苗接种过程的早期最有益,并且同一部位注射导致持续刺激免疫途径,这可能有利于引发抗原特异性 T 细胞扩增。