现实世界的传感处理应用需要紧凑、低延迟和低功耗的计算系统。混合忆阻器-互补金属氧化物半导体神经形态架构凭借其内存事件驱动计算能力,为此类任务提供了理想的硬件基础。为了展示此类系统的全部潜力,我们提出并通过实验演示了一种用于现实世界对象定位应用的端到端传感处理解决方案。从仓鸮的神经解剖学中汲取灵感,我们开发了一种生物启发的事件驱动对象定位系统,将最先进的压电微机械超声换能器传感器与基于神经形态电阻式存储器的计算图结合在一起。我们展示了由基于电阻式存储器的巧合检测器、延迟线电路和全定制超声传感器组成的制造系统的测量结果。我们使用这些实验结果来校准我们的系统级模拟。然后使用这些模拟来估计对象定位模型的角度分辨率和能量效率。结果揭示了我们的方法的潜力,经评估,其能量效率比执行相同任务的微控制器高出几个数量级。
Sophie Cambronero,AurélienDupré,Charles Mastier,David Melodelima。在体内猪模型中对肝组织的非侵入性高强度的超声处理:使用环形传感器快速,大而安全的消融。医学与生物学超声波,2023,49(1),pp.212-224。10.1016/j.ultrasmedbio.2022.08.015。hal-04745052
[1] MILLER DL, SMITH NB, BAILEY MR 等。治疗性超声应用和安全注意事项概述[J]。超声医学杂志,2012,31 (4): 623-634。[2] WANG J, ZHENG Z, CHAN J 等。用于血管内超声成像的电容式微机械超声换能器[J]。微系统纳米工程,2020,6 (1): 73。[3] JIANG X, TANG HY, LU Y 等。基于与 CMOS 电路键合的 PMUT 阵列的发射波束成形超声指纹传感器[J]。IEEE 超声铁电频率控制学报,2017,PP (9): 1-1。[4] CHEN X, XU J, CHEN H 等。利用多频连续波的 pMUT 阵列实现高精度超声测距仪[J]。微机电系统,2019 年。[5] CABRERA-MUNOZ NE、ELIAHOO P、WODNICKI R 等人。微型 15 MHz 侧视相控阵换能器导管的制造和特性[J]。IEEE 超声铁电和频率控制学报,2019 年:1-1。[6] LU Y、HEIDARI A、SHELTON S 等人。用于血管内超声成像的高频压电微机械超声换能器阵列[S]。IEEE 微机电系统国际会议;2014 年。[7] ZAMORA I、LEDESMA E、URANGA A 等人。用于成像应用的具有 +17 dB SNR 的单片 PMUT-on-CMOS 超声系统[J]。 IEEE Access,2020,页(99):1-1。[8] JUNG J,LEE W,KANG W 等。压电微机械超声换能器及其应用综述[J]。微机械与微工程杂志,2017,27 (11):113001。[9] BERG S,RONNEKLEIV A。5F-5通过引入有损顶层降低CMUT阵列中膜之间的流体耦合串扰[S]。超声波研讨会;2012年。[10] LARSON J D。相控阵换能器中的非理想辐射器[S]。IEEE;1981年。[11] NISTORICA C、LATEV D、SANO T 等。宽带宽、高灵敏度的高频压电微机械换能器[S]。 2019 IEEE 国际超声波研讨会(IUS);2019: 1088-1091。[12] 何丽梅,徐文江,刘文江等。基于三维有限元仿真的二维阵列压电微机械超声换能器性能和串扰评估[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[13] PIROUZ A、MAGRUDER R、HARVEY G 等。基于 FEA 和云 HPC 的大型 PMUT 阵列串扰研究[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[14] DZIEWIERZ J、RAMADAS SN、GACHAGAN A 等。一种用于NDE应用的包含六边形元件和三角形切割压电复合材料子结构的2D超声波阵列设计[S]。超声波研讨会;2009年。[15]徐婷,赵玲,姜哲,等。低串扰、高阻抗的压电微机械超声换能器阵列设计
下午1:20 - 1:45 PM CampusEnergy2025-133:通过在科罗拉多州Golden的国家可再生能源实验室脱碳供暖的途径,以实现联邦排放目标,这
摘要 — 自旋电子逻辑器件最终将用于混合 CMOS-自旋电子系统,该系统通过传感器在磁场和电域之间进行信号相互转换。这强调了传感器在影响此类混合系统整体性能方面的重要作用。本文探讨了以下问题:基于磁隧道结 (MTJ) 传感器的自旋电子电路能否胜过其最先进的 CMOS 同类电路?为此,我们使用 EPFL(洛桑联邦理工学院)组合基准集,在 7 nm CMOS 和基于 MTJ 传感器的自旋电子技术中合成它们,并在能量延迟积 (EDP) 方面比较这两种实现方法。为了充分利用这些技术的潜力,CMOS 和自旋电子实现分别建立在标准布尔门和多数门之上。对于自旋电子电路,我们假设域转换(电/磁到磁/电)是通过 MTJ 执行的,计算是通过基于域壁 (DW) 的多数门完成的,并考虑了两种 EDP 估计方案:(i) 统一基准测试,忽略电路的内部结构,仅将域传感器的功率和延迟贡献纳入计算,以及 (ii) 多数-反相器-图基准测试,还嵌入了电路结构、相关关键路径延迟和 DW 传播的能量消耗。我们的结果表明,对于统一情况,自旋电子路线更适合实现具有少量输入和输出的复杂电路。另一方面,当也通过多数和反相器综合考虑电路结构时,我们的分析清楚地表明,为了匹配并最终超越 CMOS 性能,MTJ 传感器的效率必须提高 3-4 个数量级
1 上海交通大学先进微纳米制造技术国家重点实验室,上海 200240,中国 2 上海交通大学电子信息与电气工程学院微纳电子学系,上海 200240,中国 3 上海交通大学医学院、上海交通大学口腔医学院、国家口腔医学中心、国家口腔疾病临床研究中心、上海市口腔医学重点实验室,上海 200011,中国 4 新加坡国立大学电气与计算机工程系,4 Engineering Drive 3,117576,新加坡 5 新加坡国立大学传感器与微机电系统中心,4 Engineering Drive 3,117576,新加坡
摘要:超声波无线能量传输技术(UWPT)是植入式医疗设备(IMD)供电的关键技术。近年来,氮化铝(AlN)由于其生物相容性和与互补金属氧化物半导体(CMOS)技术的兼容性而备受关注。同时,钪掺杂氮化铝(Al 90.4%Sc 9.6%N)的集成是解决AlN材料在接收和传输能力方面的灵敏度限制的有效解决方案。本研究重点开发基于AlScN压电微机电换能器(PMUT)的微型化UWPT接收器装置。所提出的接收器具有2.8×2.8 mm 2的PMUT阵列,由13×13个方形元件组成。采用声学匹配凝胶,解决液体环境下声阻抗不匹配问题。在去离子水中的实验评估表明,电能传输效率(PTE)高达2.33%。后端信号处理电路包括倍压整流、储能、稳压转换部分,可有效将产生的交流信号转换为稳定的3.3V直流电压输出,成功点亮商用LED。这项研究扩展了无线充电应用的范围,为未来实现将所有系统组件集成到单个芯片中,进一步实现设备小型化铺平了道路。
槽之间的间距为 0。槽具有独特的轮廓,可实现 C 波段信号的耦合,而不会降低 Ku 波段信号的质量。槽的对称配置和独特轮廓确保在这种不连续性处不会产生高阶模式,从而可能降低 Ku 波段信号的质量。然后,分支波导网络将来自每对槽的耦合信号传送到合适的功率组合组件(例如 Magic T),每个组件用于相应的极化。应用 VSAT 网络 ISRO 提供将组合 C/Ku 接收馈电系统的技术转让给具有足够经验和设施的印度工业。有兴趣获得专有技术的企业可以写信详细说明其目前的活动、基础设施和设施。Ku 波段 OMT Ku 波段 OMT 由一个一端封闭的中央圆形波导和四个对称排列的分支矩形波导组成。一对这样的共线矩形波导将相同极化的信号传送到功率组合网络。中心圆形波导由一个独特的匹配元件组成。匹配元件用于对传入信号进行良好匹配。选择对称配置是为了避免在公共连接处不产生高阶模式。功率组合网络可以通过 Magic T 或简单的 E 平面分叉波导功率组合器来实现。
于 2023 年 4 月 2 日收到,来自澳大利亚布里斯班皇家布里斯班妇女医院麻醉和围手术期医学系(NP);澳大利亚昆士兰州布里斯班昆士兰大学医学院(NP、FW、PJS);澳大利亚墨尔本大学外科系(NP);澳大利亚布里斯班皇家布里斯班妇女医院急救和创伤中心(FW);澳大利亚布里斯班昆士兰大学临床研究中心(MJB、PNAH、AGS);澳大利亚布里斯班 QIMR Berghofer 医学研究所统计部门(SL);澳大利亚南港黄金海岸大学医院急诊科(PJS);澳大利亚南港格里夫斯大学医学和牙科学院(PJS);澳大利亚布里斯班格里夫斯大学护理与助产学院 (NM, CMR);澳大利亚布里斯班皇家布里斯班妇女医院护理与助产研究中心 (NM, CMR);澳大利亚布里斯班格里夫斯大学血管通路教学与研究组联盟 (NM, CMR);澳大利亚布里斯班昆士兰大学护理、助产与社会工作学院 (NM, CMR);澳大利亚布里斯班昆士兰病理学中心微生物学 (PNAH, AGS);澳大利亚布里斯班大都会北医院与健康服务中心赫斯顿传染病研究所 (CMR)。稿件接受出版日期为 2023 年 5 月 29 日。
探头。通过这种方式,可以评估被检查组织的结构和形态及其功能。现代商用超声探头的主要元件是压电陶瓷换能器,它本质上是刚性的,僵硬的,并且与人体组织的机械和声学阻抗不匹配。[3] 因此,商用探头不弯曲,不符合人体解剖结构,并且需要使用超声凝胶,而凝胶会随着时间推移而变干,从而限制了长期测量。凝胶会在皮肤上留下油腻的残留物,导致皮肤干燥、患者不适甚至过敏反应。[4] 此外,商用探头采用额外的匹配层和背衬层,导致复杂性和笨重性增加。另一方面,商用设置中使用的后端采集硬件也存在许多限制。现有的研究系统笨重且难以操作,而移动手持系统重量轻但在高帧率数据处理方面受到限制。[5] 因此,超声的可穿戴性是一个两端开放的问题,一直是近期研究的热点。