执行摘要F-22A,T/N 06-4109 NELIS空军基地,内华达州,2020年10月30日,2020年10月30日,大约在当地时间0930年,Mishap飞机(MA),F-22A,F-22A,尾巴号(T/N)06-4109,在Auxiliary Power Eutition(Apu)的尾气单元(APU)的尾气过度。MA被分配到NELIS空军基地(AFB),内华达州(NV)的422D测试和评估中队,总部位于佛罗里达州Eglin AFB。MA由第757架飞机维护中队,第57翼,Nellis AFB,NV。估计更换受损零件并修复MA的估计成本为2,690,000美元。2020年6月26日,MA开始进行广泛的修改,为操作测试任务做准备。 2020年10月28日,为了促进MA修改的故障排除,删除了APU混合排气管(AMED),在此期间未拉动和扣紧时间,在此期间,未对MA的结构或MA的数字形式提出警告,并根据维护成员(MXM)(MXM)1。2020年6月26日,MA开始进行广泛的修改,为操作测试任务做准备。2020年10月28日,为了促进MA修改的故障排除,删除了APU混合排气管(AMED),在此期间未拉动和扣紧时间,在此期间,未对MA的结构或MA的数字形式提出警告,并根据维护成员(MXM)(MXM)1。此外,这些错误未通过验证MXM1工作的现场7级主管MXM2纠正。2020年10月30日,MA需要通过航空航天地面设备(年龄)对飞机门进行防护和重新配置,但决定使用APU。在不幸的那天,APU紧急开关(AES)被错误地设置为“正常”。在术前检查中,MXM3在对MA表格的审查和通过视觉检查中未能识别,并在APU操作之前需要AMED安装。APU开始后,烟雾开始从Apu排气舱开始散发到左主登陆齿轮轮。MXM3延迟了紧急APU关闭,以查看故障报告代码(错误)的数字表格。附近的维护成员接近MA,并将AES设置为“紧急情况”,并手动关闭APU。事故调查委员会主席(BP)发现,大量证据表明,事故的原因是不当维护程序,导致APU开始时,在删除了AMED。BP还通过大量证据发现的四个其他因素,这些因素实质上导致了不幸的问题:(1)事故单位的培养物,包括对CB项圈的使用有限和对警告的使用不一致; (2)MA上测试仪器的设计,该仪器掩盖了对适用的CBS的访问; (3)MA修改的广泛性质; (4)由未成年人当天的几个非标准事件引起的干扰。
要启动燃气涡轮发动机,压缩机部分通常由电动启动器旋转。随着压缩机每分钟转数 (rpm) 的增加,流过入口的空气被压缩到高压,输送到燃烧部分并点燃。在燃气涡轮发动机中,并非所有压缩空气都用于支持燃烧。部分压缩空气绕过发动机内的燃烧器部分以提供内部冷却。燃烧室内的燃料/空气混合物在连续燃烧过程中燃烧并产生非常高的温度,通常约为 4,000° 华氏度 (F)。当这种热空气与旁路空气混合时,混合空气的质量温度会降至 1,600 – 2,400 °F。热空气和气体的混合物膨胀并穿过涡轮叶片,迫使涡轮部分旋转。涡轮通过直轴、同心轴或两者的组合来驱动压缩机部分。在为涡轮部分提供动力后,燃烧气体和旁路空气通过排气管从发动机中流出。一旦燃烧器部分的热气通过涡轮机提供足够的动力来维持发动机运转,启动器就会断电,启动序列结束。燃烧持续进行,直到切断燃料供应,发动机停止运转。
INCONEL® 镍铬合金 625 (UNS N06625/W.Nr. 2.4856) 因其高强度、出色的可加工性(包括连接)和出色的耐腐蚀性而被广泛使用。使用温度范围从低温到 1800°F (982°C)。成分如表 1 所示。INCONEL 合金 625 的强度源于钼和铌对其镍铬基质的硬化作用;因此无需进行沉淀硬化处理。这种元素组合还使其对各种异常严重的腐蚀环境以及氧化和渗碳等高温效应具有出色的抵抗力。 INCONEL 625 合金的特性使其成为海水应用的绝佳选择,包括不受局部侵蚀(点蚀和缝隙腐蚀)、高腐蚀疲劳强度、高抗拉强度和抗氯离子应力腐蚀开裂。它用作系泊电缆的钢丝绳、机动巡逻炮艇的螺旋桨叶片、潜艇辅助推进马达、潜艇快速断开配件、海军多用途船的排气管、海底通信电缆护套、潜艇传感器控制器和蒸汽管波纹管。潜在应用包括弹簧、密封件、水下控制器的波纹管、电缆连接器、紧固件、弯曲装置和海洋仪器组件。高拉伸、蠕变和断裂强度;出色的疲劳和
Westland Lynx(陆军版)注:Lynx 是英国的主要轻型直升机。Lynx 可以(并且经常)配备枪支和导弹(通常是 TOW ATGM)。没有提供弹射座椅,直升机不能在空中加油。Lynx AH-1 是第一个陆军版,1967 年。它只为英国陆军制造。机身两侧都有一个连接点,用于挂载武器。机身下方还有一个用于挂载机枪吊舱或腹部炮塔的连接点。AH-1 上的挂载点通常不安装导弹; Lynx AH-1 实际上没有精确发射导弹的设备,尽管在 AH-1 上安装导弹并非闻所未闻。Lynx AH-1GT 是 Lynx AH-7 问世前的临时攻击版本;它的瞄准设备稍好一些。Lynx AH-7 是根据英国陆军的 HELARM 计划设计的。它基本上是 AH-1,但进行了多项改进,使其在战场上更具杀伤力和生存能力。排气管已加装防护罩,有助于摆脱红外制导导弹和红外观察器,并增加了照明弹和箔条投放器。航空电子设备已升级。Lynx AH-9 是进一步的升级。发动机已更换为更强大的发动机,旋翼叶片已更换为更坚固、更轻的复合材料。暮光之城 2000 注释:AH-9 不存在。
图 2。1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 涡轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非亨德里纳发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示颗粒如何完美地呈球形并倾向于相互附着(Lethabo 发电站)。10 图 2.5:显微照片显示从最小颗粒到最大球体的 100µm 以下尺寸范围。形状怪异的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示尺寸范围 > 100µm 的颗粒。除了球体外,这里还可以看到更多不规则颗粒,这些球体是半燃煤或炭的大颗粒(Lethabo 发电站)。11 图 3。1:A/SI 304 不锈钢和碳钢的损耗与温度的关系,注意两种材料的损耗峰值的位置和大小 [BJ。23 图 3。2:两种不同钢的损耗与温度的关系,无论粒子撞击速度如何,其峰值损耗都发生在同一温度下 [51}。23 图 3。3:侵蚀主导行为状态的定位和向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。64 图 4。67 图 4。28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性也随之增加 [73] 37 图 3。6:Shui 等人的图表清楚地说明了侵蚀速率随~~fy ~ 图 3 的增加而增加的趋势。7:氮化和碳化样品的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征 (1) - (7) 与装置照片中的特征相对应。46 图 4.2:侵蚀装置的照片:(1)气体火焰,(2)预热室,(3)侵蚀进料器,(4)加速管。47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b) 测试部分插入的样品室 (5)。48 图 4.4:冷却部分 (6) 连接到旋风分离器和排气管 (7)。可以看出排气管如何有效增加旋风出口管的高度。49 图 4.5:旋风分离器的示意图,显示重要尺寸。6:200°G 运行条件下,仪器上各个位置的温度与时间的关系图。7:500°G 运行条件下,仪器上各个位置的温度与时间的关系图。68 图 4.8:几种不同空气供应压力下,样品最终温度与气体调节器供应压力的关系图。引用的气压是压力调节器上显示的单位,其中 1 bar= 高于大气压 1 个大气压,即2.026x10 5 N.m· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下的颗粒和气体速度与供应压力的关系
图 2.1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 汽轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非 Hendrina 发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示了颗粒如何呈现完美的球形并且倾向于相互粘附(Lethabo 发电站)。10 图 2.5:显微照片显示了从最小颗粒到最大球体的尺寸范围,其尺寸范围都在 100µm 以下。形状畸形的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示了尺寸范围 > 100µm 的颗粒。这里除了球体之外,还可以看到更多不规则颗粒,这些球体是半燃煤或焦炭的大颗粒(Lethabo 发电站)。11 图 3. 1:A/SI 304 不锈钢和碳钢的损耗与温度关系,注意两种材料损耗峰值的位置和大小 [BJ。23 图 3. 2:两种不同钢的损耗与温度关系,无论粒子撞击速度如何,它们的峰值损耗都发生在同一温度下 [51}。23 图 3. 3:侵蚀主导行为状态的定位以及向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。 28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性能增强 [73] 37 图 3.6:Shui 等人的图表清楚地说明了随着温度的增加,侵蚀速率呈上升趋势。 图 3.7:氮化和碳化试样的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。 40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征(1)-(7)与装置照片中的特征相对应。 46 图 4.2:腐蚀装置的照片:(1)气体火焰,(2)预热室,(3)腐蚀进料器,(4)加速管。 47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b)测试部分插入的样品室(5)。48 图 4.4:冷却部分(6)与旋风分离器和排气管(7)相连。可以看出排气管如何有效增加旋风出口管的高度。 49 图 4.5:显示重要尺寸的旋风图。 64 图 4. 6:200°G 运行期间仪器上各个位置的温度与时间的关系图。 67 图 4. 7:500°G 运行中,仪器上不同位置的温度与时间的关系图。 68 图 4.8:几种不同空气供应压力下样品最终温度与气体调节器供应压力的关系。引用的空气压力是压力调节器上显示的单位,其中 1 bar= 1 个大气压以上,即 2.026x10 5 Nm· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下颗粒和气体速度与供应压力的关系
执行摘要 美国空军飞机事故调查 F-35A,T/N 12-5052 爱达荷州芒廷霍姆空军基地 2016 年 9 月 23 日 2016 年 9 月 23 日,当地时间约 08:52,事故飞机 (MA) 是一架 F-35A,尾号 12-5052,隶属于亚利桑那州卢克空军基地 (AFB) 第 56 战斗机联队第 61 战斗机中队,但暂时驻扎在爱达荷州芒廷霍姆空军基地,在发动机启动过程中发生不可控的发动机起火。MA 中止启动,事故飞行员 (MP) 安全逃离了仍在燃烧的飞机。维修人员迅速采取行动,扑灭了大火。MA 后部的三分之二遭受了严重的火灾损坏。虽然此次事故造成的总损失尚未确定,但 MA 的损失估计超过 17,000,000 美元。事故调查委员会 (AIB) 主席根据大量证据发现,事故原因是发动机启动时的顺风。顺风将热空气吹入集成动力组的进气口,导致一系列事件,导致启动时施加到 MA 发动机的扭矩不足,从而导致发动机转速减慢。与此同时,燃料继续以越来越快的速度供应给发动机,导致发动机起火。火从发动机排气管中冒出,并被顺风吹向 MA 的外表面,造成严重损坏。在最初看到火灾迹象后约 20 秒,火势被扑灭。
图 2.1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 汽轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非 Hendrina 发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示了颗粒如何呈现完美的球形并且倾向于相互粘附(Lethabo 发电站)。10 图 2.5:显微照片显示了从最小颗粒到最大球体的尺寸范围,其尺寸范围都在 100µm 以下。形状畸形的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示了尺寸范围 > 100µm 的颗粒。这里除了球体之外,还可以看到更多不规则颗粒,这些球体是半燃煤或焦炭的大颗粒(Lethabo 发电站)。11 图 3. 1:A/SI 304 不锈钢和碳钢的损耗与温度关系,注意两种材料损耗峰值的位置和大小 [BJ。23 图 3. 2:两种不同钢的损耗与温度关系,无论粒子撞击速度如何,它们的峰值损耗都发生在同一温度下 [51}。23 图 3. 3:侵蚀主导行为状态的定位以及向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。 28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性能增强 [73] 37 图 3.6:Shui 等人的图表清楚地说明了随着温度的增加,侵蚀速率呈上升趋势。 图 3.7:氮化和碳化试样的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。 40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征(1)-(7)与装置照片中的特征相对应。 46 图 4.2:腐蚀装置的照片:(1)气体火焰,(2)预热室,(3)腐蚀进料器,(4)加速管。 47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b)测试部分插入的样品室(5)。48 图 4.4:冷却部分(6)与旋风分离器和排气管(7)相连。可以看出排气管如何有效增加旋风出口管的高度。 49 图 4.5:显示重要尺寸的旋风图。 64 图 4. 6:200°G 运行期间仪器上各个位置的温度与时间的关系图。 67 图 4. 7:500°G 运行中,仪器上不同位置的温度与时间的关系图。 68 图 4.8:几种不同空气供应压力下样品最终温度与气体调节器供应压力的关系。引用的空气压力是压力调节器上显示的单位,其中 1 bar= 1 个大气压以上,即 2.026x10 5 Nm· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下颗粒和气体速度与供应压力的关系
图 2.1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 汽轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非 Hendrina 发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示了颗粒如何呈现完美的球形并且倾向于相互粘附(Lethabo 发电站)。10 图 2.5:显微照片显示了从最小颗粒到最大球体的尺寸范围,其尺寸范围都在 100µm 以下。形状畸形的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示了尺寸范围 > 100µm 的颗粒。这里除了球体之外,还可以看到更多不规则颗粒,这些球体是半燃煤或焦炭的大颗粒(Lethabo 发电站)。11 图 3. 1:A/SI 304 不锈钢和碳钢的损耗与温度关系,注意两种材料损耗峰值的位置和大小 [BJ。23 图 3. 2:两种不同钢的损耗与温度关系,无论粒子撞击速度如何,它们的峰值损耗都发生在同一温度下 [51}。23 图 3. 3:侵蚀主导行为状态的定位以及向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。 28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性能增强 [73] 37 图 3.6:Shui 等人的图表清楚地说明了随着温度的增加,侵蚀速率呈上升趋势。 图 3.7:氮化和碳化试样的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。 40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征(1)-(7)与装置照片中的特征相对应。 46 图 4.2:腐蚀装置的照片:(1)气体火焰,(2)预热室,(3)腐蚀进料器,(4)加速管。 47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b)测试部分插入的样品室(5)。48 图 4.4:冷却部分(6)与旋风分离器和排气管(7)相连。可以看出排气管如何有效增加旋风出口管的高度。 49 图 4.5:显示重要尺寸的旋风图。 64 图 4. 6:200°G 运行期间仪器上各个位置的温度与时间的关系图。 67 图 4. 7:500°G 运行中,仪器上不同位置的温度与时间的关系图。 68 图 4.8:几种不同空气供应压力下样品最终温度与气体调节器供应压力的关系。引用的空气压力是压力调节器上显示的单位,其中 1 bar= 1 个大气压以上,即 2.026x10 5 Nm· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下颗粒和气体速度与供应压力的关系
图 1.通用航空飞机燃油消耗历史值和预测值。日历年包括 2000 – 2020 年 ……………………………………...……………... 2 图 2。航空相关乙醇事件的时间表 ………………………………… 5 图 3。J.P. Instruments EDM-800 手册中的“最佳动力”(蓝色)和“最佳经济”(红色)混合设置 …………………………………………… 11 图 4。试验台飞机 (N152BU) …………………………………………………… 16 图 5。试验台动力装置,(a) 右舷显示气缸 1 和 3 (b) 左舷显示气缸 2 和 4 …………………………………………... 17 图 6。从推荐的倾斜度(25°F 富峰)下载的原始数据2007 年 3 月 4 日进行的 E40 航班(EGT)…………………………………… 19 图 7。TSTC 韦科机场 (KCNW) 的机场图………………………….. 23 图 8。从 TSTC 机场 (CNW) 北出发(灰线)和南出发(粉红线)的航线规则 ………………………………………………... 24 图 9。EGT #3 安装位置,(a) 块内区域表示试验台发电厂 #2 排气管的位置和 (b) #2 排气管上 EGT 探头的特写 ……………………………………………………………………...... 26 图 10。燃油校准程序正在进行中,(a) 校准的燃油集油罐和 (b) 球阀延伸到燃油管路,可在校准过程中调节燃油流量……………………………………………………………… 28 图 11。全油门时随着乙醇含量增加,转速增加趋势 ...................................................................................................................................... 33 图 12。“推荐混合”空燃比下的典型巡航性能参数 …………………………………………………………………………….40 图 13。全油门时随着乙醇含量增加,转速增加趋势…... 44 图 14。“峰值 EGT”空燃比下的典型巡航性能参数 ……………………………………………………………………….. 50