摘要:ATLAS 和 CMS 实验预测高亮度大型强子对撞机(HL-LHC)最内层像素探测器的辐射注量高达 1 × 10 16 1 MeV n eq /cm 2。辐射剂量的增加将导致探测器性能下降,例如漏电流和完全耗尽电压增加,信号和电荷收集效率降低,这意味着有必要开发用于甚高亮度对撞机的抗辐射半导体器件。在我们前期对超快三维沟槽电极硅探测器的研究中,通过模拟不同最小电离粒子(MIP)撞击位置下的感应瞬态电流,验证了从 30 ps 到 140 ps 的超快响应时间。本工作将利用专业软件有限元技术计算机辅助设计(TCAD)软件框架,模拟计算探测器在不同辐射剂量下的全耗尽电压、击穿电压、漏电流、电容、加权场和MIP感应瞬态电流(信号)。通过分析模拟结果,可以预测探测器在重辐射环境下的性能。像素探测器的制作将在中国科学院微电子研究所的CMOS工艺平台上进行,采用超纯高电阻率(高达10 4 ohm·cm)硅材料。
量子点 (QDs) 能够产生非经典光态,是实现量子信息技术的非常有希望的候选者。然而,这些技术所要求的高光子收集效率可能无法达到嵌入在高折射率介质中的“独立”半导体 QD。本文介绍了一种新颖的激光写入技术,能够直接制造与电介质微球自对准的 QD(精度为 ± 30 纳米)。当使用 0.7 数值孔径的物镜时,微球的存在可使 QD 发光收集增强 7.3±0.7 倍。该技术利用激光破坏 GaAs 1-xNx:H 中 N-H 键的可能性,获得低带隙材料 GaAs 1-xNx。微球沉积在 GaAs 1 − x N x :H/GaAs 量子阱的顶部,用于产生光子纳米喷射,该光子纳米喷射可精确去除微球下方的氢,从而在距样品表面预定距离处创建 GaAs 1 − x N x QD。二阶自相关测量证实了使用此技术获得的 QD 发射单光子的能力。
量子点 (QDs) 能够产生非经典光态,是实现量子信息技术的非常有希望的候选者。然而,这些技术所要求的高光子收集效率可能无法达到嵌入在高折射率介质中的“独立”半导体 QD。本文介绍了一种新颖的激光写入技术,能够直接制造与电介质微球自对准的 QD(精度为 ± 30 纳米)。当使用 0.7 数值孔径的物镜时,微球的存在可使 QD 发光收集增强 7.3±0.7 倍。该技术利用激光破坏 GaAs 1-xNx:H 中 N-H 键的可能性,获得低带隙材料 GaAs 1-xNx。微球沉积在 GaAs 1 − x N x :H/GaAs 量子阱的顶部,用于产生光子纳米喷射,该光子纳米喷射可精确去除微球下方的氢,从而在距样品表面预定距离处创建 GaAs 1 − x N x QD。二阶自相关测量证实了使用此技术获得的 QD 发射单光子的能力。
可靠地创建大规模和高度比率的Microlens阵列1-3可能会影响多个研究和量子技术的几个领域。微晶体来使垂直腔发射激光器(VCSEL)阵列的输出4,5和量子发射器6-9,以通过提高与设备活动区域10-12的耦合并提高互连接器的效率13 – CHIPS的效率来提高图像的灵敏度。在量子技术中,微米尺度的固体沉浸式镜片(SILS)在从单个固态量子发射器中的单个光子16-18中的单个光子中发挥了重要作用。在固态矩阵中,通常会受到全部内部反应的限制,这将大部分发射捕获在高索引培养基中。通过以大角度去除折射,SILS可以将收集效率提高到10-20,例如,与钻石19中与单氮胶菌(NV)中心相关的自旋/光子界面所示。- 床上用品NV中心具有壮观的突破,例如其电子自旋18的单发射击读数,第一个漏洞的铃铛测试20和实现了远程固态量子设备的多节点Quantum网络21,22的多节点Quantum网络。最近,该技术还扩展到具有更好成熟的其他材料中的类似量子发射器,例如碳化硅23-25。
三光子头式显微镜用于记录神经元活性。他们的技术局限性包括成像深度,改变焦平面时对动物行为的干扰以及在点燃环境中无法形象的成像。klioutch-Nikov,Kerr和同事开发了一个头部安装的三光子激发显微镜,可以在点燃环境中自由移动的小鼠中的所有皮层分辨率以单神经元分辨率进行成像。作者设计了一个轻巧的显微镜,具有远程聚焦,扩展的Z范围和高分辨率。设置允许适当的动物活动能力和头部取向。作者对表达钙指标的神经元进行了成像,并以无标签方法对血管结构进行了成像。他们在几天内对4和6进行了神经元活性的重复测量,并以最小的或没有光漂白或光损伤进行了测量。一个两通道检测器系统使作者能够提高收集效率,从而在暗中和点燃的环境中进行成像,而没有明显的信号检测发生变化,并且在两个条件之间的过渡中没有伪像。第4层和第6层神经元在光线和黑暗环境中具有活性,当光条件切换时,神经元活性稀疏。开发的成像设置可以在自然条件下记录。Elisa Floriddia自然神经科学
灵敏度 - 数字成像 - 像素 - 量子效率 - 复位 - 正向偏置 - 区域板 - 通道电位 - 全帧成像器 - PPD - 采样频率 - 光子散粒噪声 - VGA - 产量 - 暗固定模式噪声 - 反向偏置二极管 - 收集效率 - 逐行扫描 - 动态范围 - 薄膜干涉 - 固定光电二极管 - 光谱灵敏度 - 饱和电压 - 双线性成像器 - 光子传输曲线 - 行间传输图像传感器 - 电荷耦合器件 - 微透镜 - 暗电流散粒噪声 - E SD - 条纹滤波器 - 数码相机 - 拼接 - 高斯分布 - 硅 - 热噪声 - 传感器结构 - 亮度 - 浮动扩散放大器 - 转换因子 - 闪烁 - MOS 电容 - 辐射单位 - 移位寄存器 - 带隙 - 黄色 - 补色 - 光电门 - 列放大器 - 纹波时钟 - 反转层 - CMOS 成像器 - 对数响应 - 普朗克常数 - 电荷泵 - 阈值电压 - 埋通道 CCD - 暗电流 - 噪声等效曝光 - MSB - 转换因子 -缺陷像素校正 - 边缘场 - 分辨率 - 双相传输 - 正透镜 - 角响应 - PRNU - 波长 - 帧传输成像器 - 电荷注入装置 - 测试 - 通道定义 - 摄像机 - 光晕 - 隔行扫描 - 彩色滤光片 - 自动白平衡 - 虚拟相位 - 拖尾 - 单斜率 ADC - 表面电位 - 耗尽层 - 垂直防光晕 - 多相钉扎 - 电子快门 - PAL - 埃普西隆 - 相关双采样 - 蓝色 - CIF - 洋红色 - 填充因子 - 延迟线 - 线性响应 - 规格 - 结深 - 复位噪声 - 线性图像传感器 - 光学低通滤波器 - 二氧化硅 - 光电二极管 - 勒克斯 - 闪光 ADC - 定时抖动 - 拥有成本 - 封装 - 光刻 - 有源像素传感器 - DSP - 积分时间 - 三相传输 - 光子通量 - 晶圆级封装 - 电荷泵 - 滤光轮 - 有效线时间 - 吸收深度 - 玻尔兹曼常数 - 弱反转 - LSB - 水平消隐 - 光栅滤波器 - 帧抓取器 - 原色 - 拜耳模式- 缩放 - 功耗 - 单色仪 - 模拟数字转换 - 光固定模式噪声 - 无源像素传感器 - 彩色棱镜 - SGA - 氮化硅 - 温度依赖性 - 负透镜 - sigma delta ADC - 混叠 - 插值 - 传输效率 - F 数 - 红色 - 动态像素管理 - 栅极氧化物 - 热漂移 - 热噪声 - 扩散 MTF - 有源像素传感器 - 泄漏器 - 1/f 噪声 - 青色 - 信噪比 - 孔径比 - 奈奎斯特频率 - 非隔行扫描 - 像素内存储器 - 四相传输 - 技术 - kTC 噪声 - 辐射损伤 - 离子注入 - MOS 晶体管 - 内透镜 - 光度单位 - 表面通道 CCD - 延时和集成成像器 - 宽高比 - 绿色 - NTSC - 单芯片相机 -可见光谱 - 调制传递函数 - 同步快门 - 马赛克滤光片 - 背面照明 - 色彩串扰 - 量化噪声 - 逐次逼近 ADC - 压缩 - 漏极 - 多晶硅 - 堆叠 - 光子转换 - 飞行时间 - 吸收系数 - DIL - 收集体积 - 孔 - 四线性成像器 - 单相传输 - 填充和溢出 - 收集效率 - 垂直消隐 - 源极跟随器 - 雪崩倍增 - 辐射 - 横向防晕 - 晶圆上测试 - 自感场 - 自动曝光 - 泊松分布 - 电荷复位 - 伽马
近年来,在下一代高性能硅顶点设计中,单层活性像素传感器(MAP)已成为混合检测器的有效替代品,以及用于高能物理(HEP)实验和其他研究领域的高能物理(HEP)实验和其他研究领域(如医学成像和空间应用)的跟踪探测器。此操作是LHC运行的Alice 3实验的飞行探测器的技术之一。地图的主要特征之一是,它们可以使用商业CMOS流程进行成本效益实施,而无需昂贵的互连。在这种情况下,完全耗尽的单片活性像素传感器(FD-MAP)代表最先进的检测器技术,因为它们具有通过漂移来收取电荷的优势,从而使比像素矩阵的快速且均匀的响应能够。Arcadia项目尤其是通过创新的传感器设计开发FD-MAP,该设计利用背面偏置电压充分耗尽了传感器并提高了电荷收集效率和时机性能。最近的发展已经解决了在地图中引入增益层的可能性。借助Signal乘法,可以达到较高的信号与噪声比,从而将其转化为相对于没有增益的标准地图的较低功率消耗。这种特殊性使这些设备对空间应用非常有吸引力,而低功耗是非常需要的。将提出实验室测量,以及在PS,CERN进行的测试光束的初步结果。这项工作说明了具有额外增益层的整体CMOS传感器的第一个表征,这是基于与LFOUNDRY合作开发的标准110 nm CMOS技术,用于Arcadia Project的第三次运行。得出结论,将指出正在进行的研发的未来观点和下一步。
mbchakkravaarthy@gmail.com _____________________________________________________________________________________________ ABSTRACT This paper presents the design and implementation of a Proportional-Integral (PI) controller for a multi-source energy harvesting system, integrating solar and vibrational energy sources to efficiently manage the charging of a lithium-ion battery.系统利用两个并联连接的100 W太阳能电池板,提供了每个面板8 a至10 a的电流范围。此外,振动能量收获器通过通过全波桥整流器处理的3 V至12 V的总功率输出为50 MW至250 MW,输出电压为3 V至12 V。使用交织的DC-DC转换器从两个来源收获的能量进行调节,以调节功率传输到24 V,100 AH锂离子电池,该电池支持10 A(240 W)的最大充电速率,并可以放电高达1 kW。拟议的PI控制器旨在通过稳定电压波动并增强系统对来自来源的各种能量输入的响应能力来保持最佳性能。它有效地平衡了太阳能和振动能量的功率贡献,同时确保有效的电池充电和放电。本研究还研究了系统对不同环境条件和负载要求的动态反应,以确保在不同情况下进行稳定的操作。仿真结果验证了PI控制器的性能,证明了能量收集效率和整体系统稳定性的提高。这项工作通过将多种能源集成以可靠,有效的能源存储来促进可持续能源系统。Keywords: Multi-source energy harvesting, PI controller design, Lithium-ion battery charging, Solar and vibrational energy, Interleaved DC-DC converter ____________________________________________________________________________________
目前,由金属有机化学蒸气沉积(MOCVD)生长的富含硼龙硼氢化硼(H-10 BN)硝酸硼(H-10 BN)超级氮化液(MOCVD)生长的超速型硝酸硼(H-10 tbn)超级氮化液带固定型的热中性探测器保持创纪录的所有固体检测率在59%处于59%的固体检测器中。为了克服MOCVD增长的短期繁殖,包括固有的低增长率和不可避免的杂质,例如金属有机物中的碳,我们在这里证明了使用Halide蒸汽相结合(HVPE)的SEMI SENIQUICENCE的天然六边形硝酸硼(H-BN)半裸型硼硼(H-BN)半裸型WAFER的增长。电运输表征结果表明,这些HVPE种植的材料具有1 10 13 x cm的电阻率,电荷载体迁移率和寿命为2 10 4 cm 2 /v s。用100 l m厚的H-BN晶片制成的检测器表明,热中子检测效率为20%,对应于500 V的运营电压,对应于60%的收费收集效率。此初始演示为高效H-BN中性探测器的高效型核能造成了核能的核能,这可能会创造出较高的核能,这可能会产生核能的核能,这可能会创造出不合时宜的核能,这可能会导致不合时宜,这可能会造成良好的核能,这可能会造成良好的成本,这可能会导致良好的核能,这可能会导致良好的核能,这是可降低的,这可能会产生良好的核能,这可能会产生良好的核能。核废料监测和管理,医疗保健行业以及物质科学。
[1] A. L. Migdall、S. Castelletto、I. P. Degiovanni 和 M. L. Rastello,“基于相关光子的方法测量探测器量子效率的比较”,Appl. Opt.,第 41 卷,第 2914-2922 页,2002 年。[2] W. Tittel、J. Brendel、H. Zbinden 和 N. Gisin,“使用能量时间贝尔态中纠缠光子的量子密码学”,Phys. Rev. Lett.,第 84 卷,第 4737-4740 页,2000 年。[3] E. Knill、R. Laflamme 和 G. J. Milburn,“一种使用线性光学实现高效量子计算的方案”,Nature,第 41 卷,第 2914-2922 页,2002 年。 409,第 46-52 页,2001 年。[4] T. B. Pittman、B. C. Jacobs 和 J. D. Franson,“存储参量下转换中的伪需求单光子”,Phys. Rev. A,第 66 卷,第 042 303/1-042 303/7 页,2002 年。[5] A. Migdall、D. Branning 和 S. Castelletto,“定制单光子按需源的单光子和多光子概率”,Phys. Rev. A,第 66 卷,第 053 805/1-053 805/4 页,2002 年。[6] M. H. Rubin,“光学自发参量下转换中的横向相关”,Phys. Rev. A,第 54 卷,第 5349-5360 页,1996 年。[7] S. Castelletto、I. P. Degiovanni、A. L. Migdall 和 M. Ware,“关于参数下转换光子源中双光子单模耦合效率的测量”,New J. Phys.,第 6 卷,第 87/1-87/16 页,2004 年。[8] D. N. Klyskho,“结合 EPR 和双缝实验:先进波的干涉”,Phys. Lett. A,第 132 卷,第 299-304 页,1998 年。[9] C. H. Monken、P. H. Ribeiro 和 S. Padua,“优化光子对收集效率