时空卷积通常无法学习视频中的运动动态,因此需要一种有效的运动表示来理解自然界中的视频。在本文中,我们提出了一种基于时空自相似性(STSS)的丰富而鲁棒的运动表示。给定一系列帧,STSS 将每个局部区域表示为与空间和时间中邻居的相似性。通过将外观特征转换为关系值,它使学习者能够更好地识别空间和时间中的结构模式。我们利用整个 STSS,让我们的模型学习从中提取有效的运动表示。我们所提出的神经块称为 SELFY,可以轻松插入神经架构中并进行端到端训练,无需额外监督。通过在空间和时间上具有足够的邻域体积,它可以有效捕捉视频中的长期交互和快速运动,从而实现鲁棒的动作识别。我们的实验分析表明,该方法优于以前的运动建模方法,并且与直接卷积的时空特征互补。在标准动作识别基准 Something-Something-V1 & V2、Diving-48 和 FineGym 上,该方法取得了最佳效果。
层析成像是分析内部成分排列的一种方法。医学可能是利用这种方法并推动其发展的最著名学科。[1–3] 然而,层析成像也已应用于其他研究领域,如材料科学[4,5]、生物学[6]、考古学[7]甚至流体动力学[8],并且在工业领域也越来越受到认可,例如用于质量控制[9]或无损检测[10]。图像采集与实时重建算法[11]、高级图像分析[12]、特征分割和识别分析算法[13,14]与现代机器学习工具[15,16]的结合增强了这种方法的潜力。如今,实验室扫描仪普及且功能强大,受益于改进的空间和时间分辨率,尽管尖端实验仍然局限于高亮度同步加速器和X射线自由电子激光器。可以在极短的时间内获得高空间分辨率。[17,18] 对高空间和时间分辨率、大视野和高总记录时间的需求意味着目标的冲突。文献中概述了不同设备可用的实际速度和分辨率。[19–21]
量子力学改变了我们对物理世界的看法,在过去的二十年中,物理系统的量化特征也已成为技术不同分支的资源[1,2]。尤其是,当计量学遇到量子机械时,就可以使用整个新的新特征来提高物理测量的精度,并构想新颖的量子增强方案以表征信号和设备[3-5]。相对论也改变了物理的范例,并发现了相关的技术应用[6]。因此,是否可以共同利用相对论和量子机械性能以提高物理测量的精度。在本文中,我们遵循了这一想法,并证明了范式相对论特征,重力时间扩张确实可能代表了可以与量子叠加一起使用的资源,以证明重力常数的估计或其变化。
秋天给欧文斯伯勒带来了绚丽的色彩和变化。对于 Healthpark 来说,秋天是庆祝周年纪念和提供糖尿病预防等健康主题教育的季节。今年我们开设了一些新课程,您可以考虑将其纳入您的日程安排。以下是一些可能增强您的免疫系统和幸福感的季节性提示:• 与家人和朋友一起参加秋季活动。许多当地苹果园和其他场所可能会举办秋季节日或特殊活动,以社交和与他人共度时光。• 一定要接种流感和新冠疫苗,以保护您免受这些病毒的侵害。• 计划户外活动,例如在当地公园、绿地或当地小径上散步,欣赏树叶变色。• 一定要洗手。根据疾病控制中心的说法,洗手是防止传播可能导致疾病的细菌的良好防御措施。• 享受当地收获的新鲜水果和蔬菜。前往当地的农贸市场购买当季农产品和其他物品。• 随着白天变短和时间变化,请务必调整您的日程安排,以确保您获得充足的睡眠。 • 花时间进行自我护理,通过安静时间、阅读、冥想或其他放松方式减轻压力。Healthpark 团队在此提供支持健康生活方式的提示和资源。参加我们的一项计划或考虑进行 MicroFit 或 Body Stat™ 分析等评估,以帮助您衡量自己的健康状况,从而为健康设定新的目标。Collette Carter Healthpark 总监
从经济角度来看,耐久性是热冲压模具的关键因素。通过沉积新材料而不是更换来翻新模具是一种降低成本的有效方法。为此,通过定向能量沉积的方式将一种新开发的马氏体时效钢 (NMS) 熔覆在热作工具钢上。经过优化的回火后,对熔覆的 NMS 进行高温暴露以检查抗软化性能。利用光学显微镜 (OM)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、俄歇电子能谱 (AES) 和透射电子显微镜 (TEM) 的组合,系统地表征了材料的微观结构演变。熔覆钢中的沉淀物被鉴定为 Laves 相。该相的粗化被认为是钢在高温下热软化的主要原因。还使用修订的 Langer-Schwartz-Wagner (LSW) 模型模拟了粗化行为,该模型与实验观察结果非常吻合。此外,成功应用了沉淀强化数学模型来评估钢的软化行为。该模型可用于预测所研究的工具钢在高温使用过程中的硬度/强度变化。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
时间:02:50-03:20 pm 1。技术开发5年龄技术与可持续发展9。技术与生物多样性2。人力辅助的尖端技术6。技术和数字鸿沟3。技术破坏地球7。太空技术和人类井为4。未来的技术任务8。印度太空探索之旅
大型视觉模型的发展,无明显的剪辑,已经催化了对有效适应技术的研究,特别着眼于软及时调整。联合使用,使用单个图像的多个增强视图来增强零击的概括,它正在成为互动的重要领域。这主要指导研究工作,以进行测试时间及时调整。相比之下,我们为t estime a u Megentation(MTA)引入了强大的m eanshift,该方法超过了基于及时的方法而无需进行此类训练程序。这将MTA定位为独立和基于API的应用程序的理想解决方案。此外,我们的方法不依赖于某些先前测试时间augting技术中使用的临时规则(例如,置信度阈值)来过滤增强视图。相反,MTA将每种视图的质量评估变量直接纳入其优化过程,称为inllielness评分。该分数通过寻求过程进行了共同优化,从而导致有效的训练和无参数方法。我们在15个数据集上广泛地标记了我们的方法,并演示了MTA的优势和计算效率。在零摄像机模型和最先进的几种方法的顶部轻松部署为插件模块,MTA显示了系统的和一致的改进。
决策在日常生活中起着至关重要的作用,需要评估与不同选择相关的概率和风险的短期和长期结果。损害的决策可以被定义为做出不明智或冒险选择的趋势,并且在几种精神病疾病中是一个核心问题,包括药物使用和赌博障碍(1-3),注意力定义多活障碍(4)和情感障碍(5,6)(5,6)。对决策过程及其参与精神病疾病的研究有所增加,并且已经开发了对决策不同方面的几项测试。爱荷华州赌博任务(IGT)最初是为了评估腹侧前额叶皮层损害的患者的决策受损(7)。此后,它已成为一种广泛使用的工具,用于评估临床和非临床样本中不确定性和风险下的人类决策(8)。向参与者提供了四个牌牌,这些卡具有不同的胜利或亏损可能性。参与者未知,卡片在其货币收益/损失意外事件上有所不同,两个甲板是有利的,并且在长期的货币利润方面不利(7)。几项操作任务可用于对不同认知过程和潜在神经生物学的临床前研究,包括延迟折现,五个选择的串行反应时间任务(5-CSRTT)和不同版本的啮齿动物赌博任务。重要的是,从翻译价值中,这些任务具有人类类似物(9-11)。此外,培训可能会偏向实验结果。任务的共同点,有时是作为警告,是教动物在进行任何实验操作之前进行任务所需的深入培训。这使他们既耗时又耗资货币昂贵(12)。老鼠赌博任务(RGT)基于IGT,其中包括与赢得蔗糖颗粒或接受惩罚超时的不同概率相关的四个选择(13)。要建立最有利的策略,老鼠需要更喜欢与立即奖励和短暂超时相关的低风险选项,并避免与较大的即时奖励和更长的惩罚超时相关的选项。已经表明,大鼠在RGT中制定了与IGT中人类相似的策略(14、15),并且大多数大鼠在最有利的选择方面学习并保持稳定的选择(13、15-20)。然而,基于此类策略存在很大的个体差异,动物已分为三个不同的策略组:(i)战略群体更喜欢最有利的选择,(ii)更喜欢安全选择的安全群体,该群体更安全的选择,该选择最安全的选择,可以使一个不可或缺的时间和(iii)具有更高的选择组,以及(iii),以及(iii)偏爱的选择,即20岁,而不利地选择了两种选择。大鼠需要进行自由选择的RGT需要多长时间的训练,但是尚不清楚以不同的决策策略的大鼠组之间的任务获取和训练日数是否有所不同。此发现暗示以前已经证明,在RGT中具有不同策略的大鼠在与奖励和决策过程有关的区域中显示出大脑连通性的差异(20)。
3。基于正念的计划 - 定义为以好奇心和善良的关注能力(Kabat -Zinn 2003) - 已被证明会对儿童的自我调节技能产生积极影响(Zoogman等人。2014)并减少压力的负面影响(Biegel等人。2009; Broderick and Metz 2009; Mendelson等。2010)。
令人满意地遵守上述标准和NABL的相关要求。(要查看该实验室的认证范围,您也可以访问NABL网站www.nabl-india.org)
