关于 WCE:桑利沃尔昌德工程学院 (WCE) 成立于 1947 年,是马哈拉施特拉邦首屈一指的自主工程机构,也是该国最古老的工程机构之一。WCE 是一所政府资助机构,以其研究生和本科课程的学术质量而闻名,这些课程以 A 级成绩通过了 NBA 和 NAAC 认证。自 2007 年以来,该学院通过在课程中融入国际水平的学术改革并采用基于学分的学期制、持续评估和评分系统等现代实践,不断提升学术卓越性。最近,在国际教师和专家的积极参与下,学院再次修改了课程和学习系统。WCE 教师积极参与由 AICTE、DST、DRDO、BARC 等资助的研究活动,并为研究出版物做出贡献。许多 WCE 校友在印度和国外的学术界、政府和工业界担任领导职务。目标 ICCIPC 2025 为研究学者提供发表论文的平台,也为学生提供获取新技术知识的平台。通信系统、图像处理和计算涉及在设计、开发和评估不同计算平台和应用环境的信息系统时使用技术、方法。
通过对各种微核生素的分析,我们先前曾认为,真核基因组是动态系统,依靠表观遗传机制来区分种系(即,DNA要遗传)与SOMA(即DNA)(即DNA)(即经过多倍倍倍化重排等,基因组重排等)),即使在单个核的背景下也是如此。在这里,我们通过包括两个有据可查的观测值来扩展这些论点:(1)真核基因组经常与移动遗传元件(MGE)(如病毒和可替代元素(TES)(TES)(TES),造成遗传冲突,以及(2)表观遗传机制调节MGES。综合这些思想导致了以下假设:在最后一个真核生物共同祖先(LECA)中,遗传冲突有助于动态真核生物基因组的演变,并且可能导致真核生态发生(即,可能是Feca的驱动力,是Feca的驱动力,是第一个真核生物共同的祖先)。性别(即减数分裂)可能是在LECA种系 - 疾病区分的背景下进化的,因为该过程通过调节/消除体细胞(即多倍体,重新排列)遗传物质来重现种系基因组。我们对这些思想的综合,通过整合MGES和表观遗传学的作用来扩展真核生物起源的假设。
在一个空间尺寸中,非相互作用的晶格标量理论的两个有限(尺寸)的隔离真空区域之间的多体纠缠 - A(d a×d a×d b)混合高斯连续变量系统 - 局部变成局部变成(1 A×A×1 a×1 b)混合量的tensor产品核心。这些核心对内的可及纠缠表现出指数层次结构,因此可以将真空纠缠的主要区域模式的结构提取到空间分离的一对量子检测器中。超过核心,晕光的剩余模式被确定为分离,并且与核心可分开。然而,发现以(1 a×1 b)的形式分布纠缠的状态制备方案,发现混合核心对需要在光环中的额外纠缠,这被经典相关性掩盖。发现这种无法访问(绑定的)光环纠缠是可以反映可访问的纠缠的,但是随着连续体的接近,采取了步骤行为。仍然有可能不利用核心对纠缠的指数层次结构的替代初始化协议可能需要较少的纠缠。纠缠合并有望在较高的维度上持续存在,并可能有助于对渐近自由量规范的经典和量子模拟,例如量子染色体动力学。
研发是 HiTHIUM 的重中之重,因为这是我们产品竞争力的基础。因此,我们在研发方面投入了大量资金。HiTHIUM 拥有一支快速发展的研发团队,超过 1200 名工程师在公司拥有的四个研究机构工作
长度为 30 nm,称为螺线管纤维。它以典型的螺线管纤维形式包裹几乎所有剩余的 DNA。 H1 组蛋白对染色体的邻近组蛋白具有亲和力。 H1 组蛋白在中心彼此靠近并形成卷曲的电话线
,我们提出了一种通过采用拉格朗日点的外来特性来指导带电颗粒(例如电子和质子)的方法。通过围绕这些平衡点展开的动力学使这种飞跃成为可能,稳定地捕获了这种粒子,类似于木星轨道上的木马小行星的方式。与传统的方法论不同,该方法可以使带电颗粒的聚焦或三维储存,而拟议的方案可以指导小型横截面区域中的非偏见和相对论电子和质子在长期不变的情况下以长期不变的方式引导,而无需任何可观的能量损失 - 与光子传输相似于光子的光合物。在这里,通过采用扭曲的静电电势来实现粒子引导,而静态电势又在真空中引起稳定的拉格朗日点。原则上,可以在由此产生的波导的基本模式中实现指导,从而提出了在量子域中操纵这些颗粒的前景。我们的发现可能在科学和技术追求的广泛应用中很有用。这些应用可以涵盖电子显微镜和光刻,粒子加速器,量子和经典通信/传感系统,以及量子网络中节点之间的纠缠量子的方法。
这是一门面向博士生、硕士生和高年级本科生的高级课程,旨在加深对遗传学的了解。本课程涉及主要文献阅读、分析和讨论。课程结构更接近“翻转课堂”:学生将在课前阅读指定的论文和评论。课堂体验主要包括由教师主持、鼓励和澄清的学生之间的有机互动讨论。很少(如果有的话)使用幻灯片,但学生演示除外,主要基于幻灯片。论文将根据学生的兴趣进行选择,提供经典和最新出版物的组合,并将涵盖前沿主题。发表的精彩论文可能会立即在课堂上部署和讨论。课程的第一部分将涉及掌握工具和行业技巧。第二部分将涉及学生演示。当我们讨论论文时,深刻的概念就会浮现出来。讲师:Nitin Phadnis 博士,Biol 212,(801) 585-0493,nitin.phadnis@utah.edu 讲座:周一、周三、周五 11:50 AM-1:45 PM,JTB 230 办公时间:我很高兴与学生单独会面;只需联系我安排预约即可。通常也可以顺便到我的办公室或实验室 (212 Biol) 与我交谈。但是,上课前的早晨通常不是好时机。助教:Bailey Landis bailey.landis@utah.edu 讨论会:周五,下午 3:00-4:00 教科书:《遗传学分析简介》,第 12 版,Griffiths 等,Macmillan Learning。之所以选择这本书,是因为您可能在 BIOL 2030 中使用过它并且已经有了一本。您可以使用任何较新的遗传学教科书作为参考。考试和评分:讲师将根据他们对遗传学高级知识和应用水平的评估来计算成绩。权重如下:30% 小组展示 1 30% 小组展示 2 30% 课堂问题 10% 参与和积极参与 所有分数将标准化为上述权重。例如,如果您在课堂问题上获得 100/100 分,这些分数将成为您最终成绩的 30 分。课堂问题将包括指定阅读材料中的问题。参与和积极参与提供分数,因为这门课依靠同伴学习、探究性提问、分析和个人研究来创造一个充满活力的学习环境。 A:92% A-:88% B+:84% B:80% B-:76% C+:72% C:66% C-:60% D:50% E:≤50% 请注意 — — 大学的政策是,如果学生表现不佳或成绩不达标,则不会给予不完整成绩。
人工智能(AI)取得了长足的进步。在围棋和将棋的世界里,人类已经无法战胜AI。这股浪潮将进一步蔓延。学术界也不例外。AI有可能取代学者们一直在进行的研究。尤其是在我所研究的哲学领域,思考本身就是哲学的全部,因此哲学可能会遭遇与围棋和将棋相同的命运。让我们进一步思考这一点。首先,发现过去哲学家的思维模式是AI最擅长的。例如,可以让AI阅读哲学家康德的全集,从中发现类似康德的思维模式,并利用它们创建一个名为“人工智能康德”的应用程序。我预测,未来康德研究人员的工作将是向“人工智能康德”提出各种问题并分析其给出的答案。在这个领域,AI和哲学家可以建立愉快的合作关系。接下来,让AI读遍所有过去哲学家的著作,从中尽可能多地提取哲学思维模式,结果就是一系列人类能够思考的哲学思维模式。但是,肯定还有很多哲学思维模式是过去的哲学家们所忽略的,那么就让AI去发现这些未知的思维模式吧。结果就是一系列人类能够思考的哲学思维模式。一旦做到这一点,人类就无法再创造出新的哲学思维模式了。未来哲学家的工作将更接近于一种研究哲学AI行为的计算机科学。但是,这里出现了一个根本性的问题,这种哲学AI是在做真正的哲学工作吗?如果它所做的只是发现外部输入数据中未被发现的模式,或者为由* 教授,人文科学,早稻田大学,2-579-15 Mikajima,Tokorozawa,Saitama,359-1192 Japan 提出的问题提供解决方案。电子邮件:http://www.lifestudies.org/feedback.html
部落于 2016 年制定了其第一个气候变化适应计划 (CAP)。2016 年 CAP 中提出的许多项目已经实施或正在制定中。2023 年,CAP 进行了更新,包括社区意见、拟议项目和其他组成部分,这些组成部分建立了解决计划调查结果的结构。2023 年 CAP 确定了气候变化极端影响造成的问题和担忧,这些问题和担忧威胁着 Pechanga 社区的健康和繁荣。2023 年 CAP 列出了潜在的缓解策略和项目清单,如果实施,这些策略和项目可以增强应对气候变化的韧性。该 CPRG 计划包括规划阶段和随后的实施阶段。部落获得了规划阶段的资金,并利用这笔资金制定了这项 PCAP,重点是可实施的优先温室气体 (GHG) 减排措施。将在资助期结束前制定一份综合气候行动计划 (CCAP),该计划将全面概述重要的温室气体源/汇和部门,制定短期和长期温室气体减排目标,并提供实现这些目标的其他策略。规划阶段的时间表将涵盖 30 个月内的两项独立工作。自 2023 年 11 月以来,该团队一直致力于完成 PCAP 并确定可在 CPRG 实施阶段获得资助的温室气体减排措施。CCAP 的制定将于 2024 年春季开始,重点将放在社区参与和更广泛的温室气体清单上。