尽管隐式神经表征 (INR) 近期取得了进展,但对于基于坐标的 INR 多层感知器 (MLP) 来说,学习跨数据实例的通用表征并将其推广至未见实例仍然具有挑战性。在这项工作中,我们为可推广的 INR 引入了一个简单而有效的框架,该框架使基于坐标的 MLP 能够通过仅调节早期 MLP 层中的一小组权重作为实例模式组合器来表示复杂数据实例;其余 MLP 权重学习跨实例通用表示的模式组合规则。我们的可推广 INR 框架与现有的元学习和超网络完全兼容,可用于学习预测未见实例的调节权重。大量实验表明,我们的方法在音频、图像和 3D 对象等广泛领域都实现了高性能,而消融研究验证了我们的权重调节。
自现代计算机历史开始以来,图灵机一直是大多数计算设备的主导架构,它由三个基本组件组成:用于输入的无限磁带、读写头和有限控制。在这种结构中,读写头可以读取的内容(即比特)与其写入/输出的内容相同。这实际上不同于人类思考或进行思维/工具实验的方式。更准确地说,人类在纸上想象/书写的是图像或文本,而不是它们在人脑中所代表的抽象概念。这种差异被图灵机忽略了,但它实际上在抽象、类比和概括中起着重要作用,而这些对于人工智能至关重要。与这种架构相比,所提出的架构使用两种不同类型的读写头和磁带,一种用于传统的抽象比特输入/输出,另一种用于特定的视觉输入/输出(更像是一个屏幕或一个带有摄像头观察它的工作区)。抽象比特与具体图像/文本之间的映射规则可以通过卷积神经网络、YOLO、大型语言模型等神经网络实现,准确率较高。作为示例,本文介绍了新的计算机架构(我们在此简称为“任氏机”)如何自主学习特定域中的乘法分配属性/规则,并进一步使用该规则生成一种通用方法(混合在抽象域和特定域中)来计算基于图像/文本的任意正整数的乘法。
早期生活压力可能会产生终生影响,增强压力敏感性并导致行为和认知缺陷。虽然早期生活压力对神经元功能的影响已被详细描述,但我们对非神经元脑细胞的作用仍然知之甚少。研究不同脑细胞类型之间复杂的相互作用对于充分了解细胞变化如何表现为早期生活压力后的行为缺陷至关重要。在这里,我们使用雄性和雌性小鼠报告早期生活压力会在杏仁核依赖的学习和记忆任务中诱发焦虑样行为和恐惧泛化。这些行为变化与突触可塑性受损、神经兴奋性增加和星形胶质细胞功能减退有关。通过降低星形胶质细胞钙活性或降低星形胶质细胞网络功能对杏仁核星形胶质细胞功能进行遗传扰动足以复制与早期生活压力相关的细胞、突触和恐惧记忆泛化。我们的数据揭示了星形胶质细胞在调节情绪显著记忆中的作用,并提供了早期生活压力、星形胶质细胞功能减退和行为缺陷之间的机制联系。
b"作者姓名:Divyanshu Tak 1,2, ;Biniam A. Garomsa 1,2 ;Tafadzwa L. Chaunzwa 1,2,10 ;Anna Zapaishchykova 1,2, ;Juan Carlos Climent Pardo 1,2 ;Zezhong Ye 1,2, ;John Zielke 1,2 ;Yashwanth Ravipati 1,2 ;Sri Vajapeyam 4 ;Ceilidh Smith 2 ;Kevin X.Liu 4 ;Pratiti Bandopadhayay 4,5 ;Sabine Mueller 9 ;黄蒙德4,5,11; Tina Y. Poussaint 4,5;Benjamin H. Kann 1,2,5 * 作者隶属关系:1. 哈佛医学院麻省总医院医学人工智能 (AIM) 项目,美国马萨诸塞州波士顿 2. 哈佛医学院丹娜—法伯癌症研究所和布莱根妇女医院放射肿瘤学系,美国马萨诸塞州波士顿 3. 马斯特里赫特大学 CARIM & GROW 放射学和核医学系,荷兰马斯特里赫特 4. 波士顿儿童医院,美国马萨诸塞州波士顿 5. 丹娜—法伯癌症研究所,美国马萨诸塞州波士顿 6. 密歇根州立大学,美国密歇根州东兰辛 7. 费城儿童医院,美国费城 8. 宾夕法尼亚大学,美国宾夕法尼亚州 9. 加利福尼亚大学神经内科、神经外科和儿科系,美国旧金山 10. 纪念斯隆凯特琳癌症中心中心,纽约,美国 11. 哈佛医学院布莱根妇女医院放射科,马萨诸塞州波士顿。 * 通讯作者 通讯地址:Benjamin H. Kann,医学博士 医学人工智能 (AIM) 项目,麻省总医院布莱根,哈佛医学院,221 Longwood Avenue,Ste 442,波士顿,马萨诸塞州 02115,美国 电子邮件:Benjamin_Kann@dfci.harvard.edu 摘要 应用于脑磁共振成像 (MRI) 的人工智能 (AI) 有可能改善疾病的诊断和管理,但需要具有可泛化知识的算法,以便在各种临床场景中表现良好。到目前为止,该领域受到有限的训练数据和特定于任务的模型的限制,这些模型不能很好地应用于患者群体和医疗任务。基础模型通过利用自我监督学习、预训练和有针对性的适应,提出了一个有前途的范例来克服这些限制。在这里,我们介绍了脑成像自适应核心 (BrainIAC),这是一种新颖的基础模型,旨在从未标记的脑 MRI 数据中学习广义表示,并作为各种下游应用适应的核心基础。我们在 48,519 个脑 MRI 上进行了广泛任务的训练和验证,证明 BrainIAC 优于局部监督训练和其他预训练模型,特别是在低数据设置和高难度任务中,允许在其他不可行的情况下应用。
1.2 挑战与影响 ARC 公开测试中,人类的平均表现准确率超过 60%[ 3 ]。相反,最有能力的模型利用 SOTA LLM[ 4 ] 也只能达到 50% 以下的准确率。考虑到大量的预训练数据,当前人工智能与人类之间的差距更加明显。对 ARC 竞赛解决方案的研究可以为我们对人类思维中的直觉和推理过程进行建模提供重要见解,促进新型人工智能范式的构建。同时,“[至少,解决 ARC-AGI 将产生一种新的编程范式[ 5 ]”,只需展示几个输入输出示例,就可以让没有编码经验的人进行程序合成。2 竞赛细节 数据集 ARC Prize 竞赛提供三个数据集:公共训练集、公共评估集和私有评估集。公共训练集和公共评估集均包含 400 个任务文件,而私有评估集包含 100 个任务文件。每个任务有 2 到 10 对(通常为 3 个)示例和 1 到 3 对(通常为 1 个)测试[2, 6]。指标 我们可以通过两种方法评估性能: 1)像素正确性 - 正确推断的像素占总数的百分比; 2)正确/不正确 - 推断的输出在形状、颜色和位置方面是否与任务的测试输出相匹配。竞赛使用第二种方法评估提交内容[6]。
量子分类和假设检验(状态和通道区分)是两个紧密相关的主题,主要区别在于前者是数据驱动的:如何将量子态 ρ(x) 分配给相应的类 c(或假设)是从训练期间的示例中学习的,其中 x 可以是可调的实验参数,也可以是“嵌入”到量子态中的经典数据。该模型是否具有泛化能力?这是任何数据驱动策略中的主要问题,即即使对于以前从未见过的状态,也能预测正确的类别的能力。在这里,我们通过证明量子分类器的准确性和泛化能力取决于量子态空间 Q 与经典参数空间 X 或类空间 C 之间的(Rényi)互信息 I(C:Q) 和 I2(X:Q),建立了量子分类与量子信息论之间的联系。基于上述特征,我们展示了 Q 的不同属性如何影响分类准确性和泛化,例如希尔伯特空间的维数、噪声量以及通过池化层等方式从 X 中忽略的信息量。此外,我们引入了信息瓶颈原理的量子版本,使我们能够探索准确性和泛化之间的各种权衡。最后,为了检验我们的理论预测,我们研究了 Ising 自旋链的量子相的分类,并提出了变分量子信息瓶颈方法来优化经典数据的量子嵌入以利于泛化。
脑肿瘤死亡率高,治疗选择有限,是全球重大健康问题。这些肿瘤是由脑内细胞异常生长引起的,大小和形状各异,因此,对于医疗专业人员来说,通过磁共振成像 (MRI) 扫描手动检测它们是一项主观且具有挑战性的任务,因此需要自动化解决方案。本研究探讨了深度学习(特别是 DenseNet 架构)自动化脑肿瘤分类的潜力,旨在提高临床应用的准确性和通用性。我们利用了 Figshare 脑肿瘤数据集,该数据集包含 233 名患者的 3,064 张 T1 加权增强 MRI 图像,这些患者患有三种常见肿瘤类型:脑膜瘤、神经胶质瘤和垂体瘤。使用来自 ImageNet 的迁移学习评估了四种预训练的深度学习模型——ResNet、EfficientNet、MobileNet 和 DenseNet。DenseNet 实现了最高的测试集准确率 96%,优于 ResNet(91%)、EfficientNet(91%)和 MobileNet(93%)。因此,我们专注于提高 DenseNet 的性能,同时将其视为基础模型。为了增强基础 DenseNet 模型的通用性,我们实施了一种微调方法,该方法采用了正则化技术,包括数据增强、dropout、批量归一化和全局平均池化,并结合了超参数优化。这种增强的 DenseNet 模型实现了 97.1% 的准确率。我们的研究结果证明了 DenseNet 结合迁移学习和微调对脑肿瘤分类的有效性,凸显了其在临床环境中提高诊断准确性和可靠性的潜力。
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税的许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
脑机接口 (BMI) 可以恢复瘫痪患者的运动功能,但目前受限于实时解码算法的准确性。使用现代训练技术的循环神经网络 (RNN) 在根据神经信号准确预测运动方面已显示出良好的前景,但尚未在闭环设置中与其他解码算法进行严格评估。在这里,我们将 RNN 与其他神经网络架构进行了比较,使用来自非人类灵长类动物的皮层内信号对手指运动进行实时连续解码。在一指和两指在线任务中,LSTM(一种 RNN)的表现优于卷积和基于 Transformer 的神经网络,平均吞吐量比卷积网络高 18%。在运动集减少的简化任务中,RNN 解码器被允许记住运动模式并匹配健全人的控制。随着不同运动数量的增加,性能逐渐下降,但并没有低于完全连续的解码器性能。最后,在双指任务中,其中一个自由度的输入信号较差,我们使用经过训练的 RNN 恢复了功能控制,这些 RNN 既可以充当运动分类器,也可以充当连续解码器。我们的结果表明,RNN 可以通过学习和生成准确的运动模式来实现功能性实时 BMI 控制。
脑机接口 (BMI) 可以恢复瘫痪患者的运动功能,但目前受限于实时解码算法的准确性。使用现代训练技术的循环神经网络 (RNN) 在根据神经信号准确预测运动方面已显示出良好的前景,但尚未在闭环设置中与其他解码算法进行严格评估。在这里,我们将 RNN 与其他神经网络架构进行了比较,使用来自非人类灵长类动物的皮层内信号对手指运动进行实时连续解码。在一指和两指在线任务中,LSTM(一种 RNN)的表现优于卷积和基于 Transformer 的神经网络,平均吞吐量比卷积网络高 18%。在运动集减少的简化任务中,RNN 解码器被允许记住运动模式并匹配健全人的控制。随着不同运动数量的增加,性能逐渐下降,但并没有低于完全连续的解码器性能。最后,在双指任务中,其中一个自由度的输入信号较差,我们使用经过训练的 RNN 恢复了功能控制,这些 RNN 既可以充当运动分类器,也可以充当连续解码器。我们的结果表明,RNN 可以通过学习和生成准确的运动模式来实现功能性实时 BMI 控制。