1。使用溶剂提取和研究影响Crystallite size-https://iopscience.org/article/10.10.1088/2053-1591/abc2df 2。大规模P-Type的制造75%SB2TE3-25%BI2TE3热雾化和热等速度按下热电学材料和热等静态按下 - https://doi.org/10.1016/j.materresbull.2020.1020.110924 3.MOS2和N之间的协同作用,S-掺杂的石墨烯氧化石墨烯支持的钯纳米颗粒用于氢进化反应-https://doi.org/10.1016/j.matchemphys.2020.2020.123106 4。M@Pd(M = Ni,Co,Cu)的电催化研究支持N,S掺杂的S掺杂的氧化石墨烯对氢和氧气进化反应 - https://doi.org/10.1002/slct.202002200 5。分子印迹的聚苯胺分子受体基于分子的化学传感器,用于三聚氰胺 - https://doi.org/10.1002/jmr.2836 6。使用分子印刷的多丙二醇 - 氧酸作为分子识别元件 - https://doi.org/10.4028/www.scientific.scientific.net/nhc.29.61 7。共晶复合材料(BI,SB)2TE3/TE热电材料的机械和热电特性
泡沫在两个不混溶的阶段之间具有细胞网络结构。泡沫的结构动力学吸引了科学和工业应用中的研究人员。尤其是,由于物理和机械性能的组合,固体金属泡沫令人兴奋,例如与低特异性重量或高抗压强度结合使用,结合了合适的能量吸收特性,因此具有高度和机械性能。他们的网络结构使它们适合于汽车和航空航天行业的轻质结构或崩溃的能量吸收[1]。复合金属泡沫适用于锂离子电池[2]。流体泡沫或细胞流体由均匀分散的气泡和连续的液体组成。流体泡沫内部的气泡通常不稳定,并且随着时间的流逝而发展以最大程度地减少其表面能量[3]。在物理学中,泡沫是一种最小化表面能量的材料的模型系统:肥皂泡沫,乳液,磁石材和晶界[3],因为它们最终发展为统计平衡的固定状态[4]。在数学中,泡沫是一个模型系统,用于研究与最小周长相关的等速度问题,并且在一个区域中具有固定数量的气泡[3]。二维随机细胞网络(2D泡沫)无处不在,例如肥皂泡沫,破碎模式和生物表皮[4]。初始瞬态后,纤维破裂引发了气泡的动态重排,那里的气泡迅速融合并慢慢发展到新的准平衡状态。清洁泡沫最初不稳定的泡沫随着时间的流逝而发展,通过减少其总表面积,随着气泡的平均大小随时间的变化而通过气泡之间的破裂(聚结)破裂或通过气体的不同交换而增长(凝聚)[5]。在玻璃,凝胶和泡沫等均衡系统中缓慢的动态和老化影响是一个丰富而有趣的话题,但仍然知之甚少[6]。诸如泡沫之类的细胞模式在自然界中广泛出现,例如生物组织中的细胞,多晶中的晶粒,胶体材料中的谷物聚集体以及一品脱啤酒的气泡[7,8]。物理学家在理论上和实验上广泛研究了泡沫的集体静态和动力学[7-15]。泡沫不仅在工程上,而且在软物质物理学上都引起了很多关注[7]。
摘要自2000年代后期以来,国家航空航天管理局(NASA)参与了用于空间应用的金属添加剂制造(AM)的开发和成熟。通过材料表征和测试,标准开发,组成的制造以及对推进开发和飞行应用的注入,重点介绍了对AM过程的理解。除了机械和热物理测试外,NASA成熟的常用航空合金(镍,铜,不锈钢和钢,铝和基于钛的镍,铝和基于钛的钢),除了机械和热物理测试外,还通过详细的AM过程和热处理表征。尽管这些合金在许多推进应用中都被积极使用,但需要使用集成计算材料工程(ICME)(ICME)和高性能应用程序的过程开发进行持续的AM优化合金。针对的应用是液体火箭发动机;先进的推进系统;和高热通量,高压和/或使用可以降解合金(例如氢)的推进剂的空间推进。本文使用激光粉末床融合(L-PBF)和激光粉末定向能量沉积(LP-DED)工艺强调了更常见的AM合金的表征和物理特性。此外,本文讨论了一些正在进行的新型合金开发和使用AM用于这些恶劣环境中的新型合金开发和成熟,例如GRCOP-42,GRCOP-84,NASA HR-1,GRX-810和C-103。这些过程的结果表明,AM可以实现使用ICME优化合金的快速开发和持续的努力,从而产生更高的性能。这些合金进行了建模,基本冶金评估,热处理研究,详细的微观结构表征和机械测试运动。这与直接应用特定的组件制造和热火测试相结合,通过高占用周期测试使技术准备水平(TRL)的提高能够提高。此处介绍了这些新型AM启用合金和正在加工的开发,包括冶金和机械性能研究。还讨论了这些合金的平行组件开发以及热火测试和未来发展的最新进步。Keywords : Additive Manufacturing, Propulsion, Rockets, Alloy Development, GRCop-42, GRCop-84, Refractory, GRX-810, NASA HR-1, L-PBF, LP-DED, DED, Laser Powder Bed Fusion, Laser Powder Directed Energy Deposition Acronyms/Abbreviations AM Additive Manufacturing (AM), Carbide Dispersion Strengthened (CDS), Directed能量沉积(DED),家用或异物碎片(DOD或FOD),氢环境封闭(HEE),氢含水剂指数(HEI),热等速度压迫(HIP),集成计算材料工程(ICME),低循环疲劳(LCF),LCF),Laser粉末床融合(LPBF),Laser fordect(Laseredect),Laser dive-dive-dive-dirotect(Laser dirotect)(LASEREDEDED)