摘要简介:PD-1/PD-L1检查点的小分子抑制剂的追求与针对该免疫检查点的单克隆抗体的广泛发展并行。制定药物筛查策略是为了识别新型的PD-L1抑制剂。方法:已经进行了基于分子对接的纯筛选,该筛选已经进行了PD-L1蛋白二聚体,以识别新的粘合剂。使用微观嗜热(MST)As-说,已确定的配体与PD-L1的结合已通过实验验证。基于酪氨酸磷酸酶SHP-2的激活,证明了化合物的细胞效应,我们证明了荧光共振能量转移(FRET)测定。结果:我们已经确定有效的Wnt/β-catenin抑制剂KYA1797K是弱PD-L1粘合剂。分子对接表明,该化合物可以与Pd-L1二聚体的界面结合,几何形状可叠加到参考PD-L1抑制剂BMS-202的几何形状。源自天然
具有CRISPR-CAS9的基因组工程中的长期障碍一直无法衡量Cas9编辑结果及其在单细胞分辨率下的功能效应。在这里,我们提出了Superb-Seq,这是一种利用T7原位转录和单细胞RNA测序的新技术,以共同测量靶向靶标Cas9编辑及其对基因表达的影响。我们在10,000 k562细胞上进行了高级seq,靶向了四个用七个引导RNA的染色质重塑基因。Superb-Seq在所有七个目标站点和其他36个非目标位点上确定了11,891个编辑事件。尽管选择了七个指南的高特异性,但其中有六个导致靶向脱靶编辑,频率从0.03%到18.6%的细胞范围不等。在USP9X的第一个内含子中,明显的脱靶编辑破坏了该基因的表达和超过150个下游基因。总而言之,由于罕见和常见的编辑事件的结合,CAS9非目标是普遍存在的,主要发生在靶向基因的内含子内,并且可以对基因表达产生广泛的影响。Superb-Seq使用现成的套件,标准设备,并且不需要病毒,这将使全基因组CRISPR屏幕能够在不同的细胞类型中以及与临床相关的指南的功能表征。
具有CRISPR-CAS9的基因组工程中的长期障碍一直无法衡量Cas9编辑结果及其在单细胞分辨率下的功能效应。在这里,我们提出了Superb-Seq,这是一种利用T7原位转录和单细胞RNA测序的新技术,以共同测量靶向靶标Cas9编辑及其对基因表达的影响。我们在10,000 k562细胞上进行了高级seq,靶向了四个用七个引导RNA的染色质重塑基因。Superb-Seq在所有七个目标站点和其他36个非目标位点上确定了11,891个编辑事件。尽管选择了七个指南的高特异性,但其中有六个导致靶向脱靶编辑,频率从0.03%到18.6%的细胞范围不等。在USP9X的第一个内含子中,明显的脱靶编辑破坏了该基因的表达和超过150个下游基因。总而言之,由于罕见和常见的编辑事件的结合,CAS9非目标是普遍存在的,主要发生在靶向基因的内含子内,并且可以对基因表达产生广泛的影响。Superb-Seq使用现成的套件,标准设备,并且不需要病毒,这将使全基因组CRISPR屏幕能够在不同的细胞类型中以及与临床相关的指南的功能表征。
摘要由严重的急性呼吸综合症冠状病毒-2(SARS-COV-2)引起的冠状病毒疾病19(COVID-19)的当前流行呼吁开发病毒复制抑制剂。在这里,我们对包括伊马替尼梅赛酸酯在内的已发表和声称的SARS-COV-2抗病毒药进行了生物信息学分析,我们发现,我们发现对Vero E6细胞的SARS-COV-2复制抑制了SARS-COV-2复制,并根据有关其他冠状病毒的文献来抑制其他关于其他冠状病毒的文献,这可能会以酪氨酸动物学酶为酪氨酸动物酶抗抑制剂。我们确定了具有溶酶体剂特征的SARS-COV-2抗病毒药簇,这意味着它们是能够渗透到细胞中的亲脂性弱碱基。These agents include cepharentine, chloroquine, chlorpromazine, clemastine, cloperastine, emetine, hydroxychloroquine, haloperidol, ML240, PB28, ponatinib, siramesine, and zotati fi n (eFT226) all of which are likely to inhibit SARS-CoV-2 replication by non-speci fi c(脱靶)的效果,这意味着它们可能不对其“官方”药理学靶标作用,而是通过对包括自噬体,内体和溶酶体在内的嗜酸细胞器的非特征作用来干扰病毒复制。伊马替尼梅赛酸盐并未落入该簇。总而言之,我们根据其理化特征提出了将SARS-COV-2抗病人的初步分类与特异性(靶)与非特殊(非目标)(非目标)药物的特定分类。
然而,尽管 CRISPR/Cas 技术具有革命性的地位,但它也存在明显的局限性和缺陷。CRISPR/Cas 最重要的限制是可能出现脱靶编辑,即 CRISPR/Cas 在非预期的位置切割 DNA。这种脱靶(OT)编辑会扭曲功能实验的解释,引入噪音和变异性,从而降低实验结果和功能性结论的可靠性。重要的是,OT 活性在 CRISPR 的治疗应用中尤其危险,在这种情况下,即使非常低频率的 OT 编辑也可能产生极其灾难性的后果 2,3 。为了应对这一挑战,该领域的许多努力都集中在改进 guideRNA(gRNA)设计以确保靶标特异性 4 和设计具有更高保真度的 Cas 变体 5 。同时,测量 OT 效应的方法,例如 GUIDE-seq 6 、CIRCLE-seq 7 和 SITE-seq 8 ,也有助于提高我们量化和合理化 OT 编辑的能力。此外,预测 OT 的能力对于该领域来说越来越重要,从而导致开发出各种用于预测 OT 位点的计算方法。
1. 波士顿儿童医院血液科/肿瘤科、丹娜法伯癌症研究所儿科肿瘤科、哈佛干细胞研究所、麻省理工学院和哈佛大学布罗德研究所、哈佛医学院儿科系,马萨诸塞州波士顿 02115,美国
摘要。DNA 折纸是 DNA 纳米技术的支柱,人们已经投入了大量精力来了解自组装反应的各种因素如何影响目标折纸结构的最终产量。本研究分析了碱基序列如何通过在自组装过程中产生脱靶副反应来影响折纸产量。脱靶结合是一种未被充分探索的现象,可能会在折纸折叠途径中引入不必要的组装障碍和动力学陷阱。我们开发了一种多目标计算方法,该方法采用给定的折纸设计,并对不同的支架序列(及其互补的钉书钉)进行评分,以确定四种不同类型的脱靶结合事件的发生率。使用我们在 DNA 折纸上的方法,我们可以选择生物序列(如 lambda DNA 噬菌体)的“坏”区域,当用作折纸支架序列时,每种形状的脱靶副反应数量过多。我们利用高分辨率原子力显微镜 (AFM) 显示,尽管支架序列具有完全互补的订书钉组,但这些支架序列在体外大多无法折叠成目标三角形或矩形结构。相反,使用我们的方法,我们还可以选择生物序列的“良好”区域。这些序列缺乏脱靶反应,当用作折纸支架时,可以更成功地折叠成其目标结构,如 AFM 所表征。这些结果已在两个不同实验室的“盲”折叠实验中得到验证,其中实验者不知道哪些支架是好的或坏的折叠者。为了进一步研究组装行为,光镊实验揭示了不同的机械响应曲线,与支架特定的脱靶相互作用相关。虽然 GC 含量较高的变体显示出较高的平均展开力,但脱靶结合较低的变体表现出更均匀的力-延伸曲线。我们的分析证实,高脱靶结合会导致结构异质性增加,如 OT 实验展开轨迹的聚类行为所示。总体而言,我们的工作表明,如果脱靶反应足够普遍,碱基序列中隐含的脱靶反应会破坏折纸自组装过程,并且我们提供了一种软件工具来选择支架序列,以最大限度地减少任何 DNA 折纸设计的脱靶反应。
源自 Cas9 RNA 引导核酸酶的遗传工具为研究和改造细菌提供了必不可少的能力。虽然在 Cas9 应用于哺乳动物细胞的早期就已注意到脱靶效应的重要性,但由于细菌基因组较小,因此很容易避免 Cas9 在细菌基因组中的脱靶切割。尽管如此,一些研究报告了 Cas9 表达有毒的实验设置,即使使用催化失活的 Cas9 变体 (dCas9)。具体而言,dCas9 在与共享特定 PAM(原间隔区相邻基序)近端序列基序的引导 RNA 复合时具有毒性。在这里,我们证明这种毒性是由 Cas9 与必需基因启动子的脱靶结合引起的,脱靶基因的沉默发生在 PAM 近端序列中仅 4 个 nt 的同一性处。在大肠杆菌和其他肠细菌的各种菌株中进行的筛选表明,有毒向导 RNA 的性质会随着脱靶位置序列的进化而改变。这些结果凸显了 Cas9 可能与细菌基因组中数百个脱靶位置结合,从而导致不良影响。在设计和解释细菌中的 CRISPR-Cas 实验时必须考虑这一现象。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 1 月 21 日发布。;https://doi.org/10.1101/2025.01.21.634017 doi:bioRxiv preprint
。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2025 年 1 月 22 日发布了此版本。;https://doi.org/10.1101/2025.01.20.633821 doi:bioRxiv 预印本