我们提出了一种方法来弥合人类视觉计算模型与视觉障碍 (VI) 临床实践之间的差距。简而言之,我们建议将神经科学和机器学习的进步结合起来,研究 VI 对关键功能能力的影响并改进治疗策略。我们回顾了相关文献,目的是促进充分利用人工神经网络 (ANN) 模型来满足视障人士和视觉康复领域操作人员的需求。我们首先总结了现有的视觉问题类型、关键的功能性视觉相关任务以及当前用于评估两者的方法。其次,我们探索最适合模拟视觉问题的 ANN,并在行为(包括性能和注意力测量)和神经层面预测它们对功能性视觉相关任务的影响。我们提供指导方针,为未来针对受 VI 影响的个体开发和部署 ANN 的临床应用研究提供指导。
本文探讨了深度学习在计算机视野领域的关键作用。计算机视觉是对启示机感知和理解视觉信息的研究,随着深度学习技术的出现,已经取得了重大进步。传统的计算机视觉方法在处理复杂的视觉任务时面临局限性,激发了对高级方法的需求。深度学习,由神经网络和卷积神经网络(CNN)提供支持,通过提供端到端的学习,功能表示和适应性来彻底改变计算机视觉。本文讨论了深度学习在计算机视觉中的各种应用,包括图像分类,对象检测,语义细分和视频分析。它还解决了深度学习的优势,例如其处理大规模数据集和概括的能力。但是,研究了挑战和局限性,包括对标记数据和计算要求的需求。本文通过强调最近的进步和未来的方向,例如转移学习,生成对抗网络(GAN)和注意机制,强调了在这个迅速发展的领域中正在进行的研发的重要性。总体而言,深度学习已成为计算机视觉中的关键工具,并有可能显着影响各种领域和应用。
试卷系列 试卷综合研究 (P) 2020 – 测试 – 2976 允许时间:两小时 最高分数:200 说明 1. 考试开始后,您应立即检查此手册是否没有任何未打印或翻转或缺失的页面或项目等。如果有,请用完整的试卷替换它。 2. 在答题纸的适当位置清楚地编码试卷系列 A、B、C 或 D(视情况而定)。 3. 您必须在试卷旁边提供的框中输入您的学号。不要在试卷上写任何其他东西。 4. 本试卷包含 100 个题目(问题)。每个题目都以英文印刷。每个题目包含四个答案。您可以选择要在答题纸上标记的答案。如果您认为有多个正确答案,请考虑最佳答案。无论如何,每个题目只能选择一个答案。 5. 您必须在单独提供的答题纸上标记所有答案。请参阅答题纸上的说明。 6. 所有题目的分数相同。尝试回答所有题目。您的总分将仅取决于您在答题纸上标记的正确答案数量。对于每个错误答案,将扣除分配分数的 1/3。 7. 在答题纸上标记试卷中各个题目的答案之前,您必须按照随准考证发送给您的说明在答题纸上填写一些详细信息。 8. 在您完成填写答题纸上的所有答案并考试结束后,您应该只将答题纸交给监考人员。试卷可以带走。9. 试卷最后附有草稿纸。
摘要。本文介绍了使用基于智能手机的计算机视觉技术来诊断手动障碍的经济高效,高效且可访问的解决方案的开发。它突出了使用TOF相机数据与RG数据和机器学习算法相结合的想法,以准确识别四肢和运动,这克服了传统运动识别方法的局限性,改善了康复和降低专业医疗设备的高成本。使用智能手机和先进的计算方法的无处不在,该研究提供了一种新的方法来提高运动障碍诊断的质量和可及性,为未来的研究和在临床实践中的研究和应用提供了有希望的方向。
b'插入\ xc3 \ xbchrung在软件开发软件中的编程中
摘要。鉴于对最近的基于视觉模型的大规模多模式培训及其概括能力,因此了解其鲁棒性的程度对于他们的现实世界部署至关重要。在这项工作中,我们的目标是评估当前基于视觉模型的弹性,以应对不同的对象到后环上下文变化。大多数鲁棒性评估方法都引入了合成数据集,以引起对物体特征(观点,比例,颜色)的变化或实际图像上使用的图像转换技术(对抗性变化,常见的损坏),以模拟分离中的变化。最近的作品探索了利用大型语言模式和di!使用模型来产生背景变化。但是,这些方法要么缺乏对要进行的更改或扭曲对象语义的控制,从而使它们不适合任务。另一方面,我们的方法可以诱导各种对象兼容地面变化,同时保留对象的原始语义和对象的真实性。为了实现这一目标,我们利用文本对图像,图像到文本和图像对段的生成能力自动生成广泛的对象到背景的变化。我们通过修改文本提示或优化文本模型的潜伏期和Textual嵌入来引起自然和对抗背景的变化。这使我们能够量化背景上下文在理解深神经网络的鲁棒性和一般性中的作用。我们生产了各种版本的标准视觉数据集(Imagenet,Coco),将多样的和相同的背景纳入图像中,或在背景中引入颜色,纹理和对抗性变化。我们进行了彻底的实验,并对基于视觉模型的鲁棒性与对象之间的背景环境之间的鲁棒性进行了深入的分析。我们的代码和评估基准将在https://github.com/muhammad-huzaifaa/ObjectCompose上找到。
在Web-scale数据集中预先训练的视觉语言模型(VLMS)在用最小数据调整时,在下游任务上表现出了显着的功能。但是,许多VLM依赖于专有数据,而不是开源数据,这限制了使用白色框的使用进行精细调整。因此,我们旨在开发一种黑匣子方法来通过自然语言提示来优化VLM,从而避免需要访问模型参数,功能嵌入甚至输出逻辑。我们采用基于聊天的LLMS来搜索VLM的最佳文本提示。特别是,我们采用了一种自动的“爬山”程序,该程序通过评估当前提示的性能并要求LLMS根据文本反馈来对其进行融合,从而将其融合到有效的提示中,所有这些程序都在没有人类的对话过程中进行了反馈。在具有挑战性的1-Shot图像分类设置中,我们的简单方法平均超过了白色框连续提示方法(COP)1。在包括Imagenet在内的11个数据集中有5%。我们的方法还优于人工工程和LLM生成的提示。我们高出了对话反馈的优势,该反馈既不是正面和负面提示,表明LLM可以在文本反馈中利用隐式“梯度”方向,以进行更有效的搜索。此外,我们发现通过我们的策略生成的文本提示不仅更容易解释,而且还以黑盒方式在不同的VLM架构上良好地转移。最后,我们在最先进的Black-Box VLM(DALL-E 3)上演示了我们的框架,以进行文本对图像优化。
最近,Visual Transformer(VIT)及其以下作品放弃了卷积,并利用了自我发项操作,比CNN获得了可比甚至更高的精度。最近,MLP-Mixer放弃了卷积和自我发项操作,提出了仅包含MLP层的体系结构。为了实现交叉补丁通信,除了通道混合MLP外,它还设计了其他令牌MLP。在诸如JFT-300M之类的极限数据集上进行训练时,它会取得令人鼓舞的结果。,但是当在ImagEnet-1k等中等规模的数据集上训练时,它的表现不如其CNN和VIT对应。MLP混合使用的性能下降激励我们重新考虑令牌混合MLP。我们发现,MLP混合中的令牌混合操作是深度卷积的变体,具有全局接收场和空间特异性配置。在本文中,我们提出了一种新颖的纯MLP体系结构,即空间移位MLP(S 2 -MLP)。不同于MLP混合器,我们的S 2 -MLP仅包含通道混合MLP。我们设计了一个空间换档操作,以实现通过补丁之间的通信。它具有局部接收场,是空间的 - 不可知论。同时,它无参数且有效地计算。在Imagenet-1K数据集训练时,提出的S 2 -MLP比MLP混合剂具有更高的识别精度。同时,S 2 -MLP在ImageNet-1k数据集上具有出色的性能,具有更简单的架构,较少的失败和参数。
1。学生将作为设计团队的一部分,使用工程设计过程来创建有效的问题解决方案。2。学生将作为设计团队的一部分工作,以通过同行评估来制定和演示团队规范和批评团队的效率。3。学生将根据对客户设计,构建和测试物理原型的客户需求的分析应用工程设计过程的步骤。4。学生将采用以客户为中心的设计和企业家心态来创建和评估可以解决问题的设计原型。5。学生将使用并选择适当的工具和技术技能来收集和分析来自各种来源的数据,描述和预测设计的行为,并基于适当的模型来证明设计决策是合理的。6。学生将撰写技术项目报告,并就其设计进行口头/多媒体演讲,其中包括解决设计如何从多个角度(技术,社会,财务,环境等)增加价值。7。学生将应用项目管理技能来制定和实施项目计划,并将日程安排和预算维护和评估为工程设计。8。学生将能够在工程领域中确定自己的动机,优势和贡献,并通过自我反思来批评他们的技能和理解。
仿射配准在全面的医学图像配准流程中不可或缺。然而,只有少数研究关注快速而鲁棒的仿射配准算法。这些研究中大多数利用卷积神经网络(CNN)来学习联合仿射和非参数配准,而对仿射子网络的独立性能探索较少。此外,现有的基于 CNN 的仿射配准方法要么关注局部错位,要么关注输入的全局方向和位置来预测仿射变换矩阵,这些方法对空间初始化很敏感,并且除了训练数据集之外表现出有限的通用性。在本文中,我们提出了一种快速而鲁棒的基于学习的算法,即粗到精视觉变换器(C2FViT),用于 3D 仿射医学图像配准。我们的方法自然地利用了卷积视觉变换器的全局连通性和局部性以及多分辨率策略来学习全局仿射配准。我们对 3D 脑图谱配准和模板匹配归一化方法进行了评估。综合结果表明,我们的方法在配准精度、稳健性和通用性方面优于现有的基于 CNN 的仿射配准方法,同时保留了基于学习的方法的运行时优势。源代码可在 https://github.com/cwmok/C2FViT 上找到。