从单个视图中恢复3D场景几何形状是计算机视觉中的基本问题。虽然经典的深度估计方法仅推断出2.5D场景表示为图像平面,但最新的基于辐射范围的aperach是重建完整的3D代表。然而,这些方法仍然在被占地的区域困难,因为没有视觉观察的几何形状需要(i)周围的语义知识,以及(ii)关于空间上下文的推理。我们提出了Kyn,这是一种单视场景重建的新方法,其原因是语义和空间上下文来预测每个点的密度。我们引入了一个视觉模块模块,以使用细粒度的语义信息丰富点特征。我们通过语言引导的空间注意机制在整个场景中汇总了点表示,以产生意识到3D语义环境的每点密度预测。我们表明,与预测每个3D点的密度相比,Kyn改善了3D形状的恢复。我们在Kitti-360上实现了最新的场景和对象重建结果,并且与先前的工作相比,零弹性概括的改进。项目页面:https://ruili3.github.io/kyn。
深度学习是一种自动学习方法,它基于大量示例的学习模式。 div>是一种复杂问题的特别有趣的方法,为之,数据(经验)广泛可用,但是制定分析解决方案是不可行的。 div>在本课程中,我们将探讨深度智能和计算机视觉的基本概念。 div>我们将通过理论会议和实践示例来展示如何根据任务(对象检测,实例分割,对象之间的关系预测)和数据模式(图像,视频,3D)创建和训练深层智力模型。 div>该课程将以一些高级问题的介绍以及有关最近趋势的讨论进行介绍。 div>
背景和动机视觉策略学习涉及将视觉观察映射到运动动作上,使机器人能够有效地与环境互动。传统方法通常在多模式作用分布的复杂性以及对高精度和时间一致性的需求中挣扎。最近引入的扩散策略通过采用有条件的降级扩散过程来生成机器人动作,从而提供了有希望的解决方案。这些模型在产生复杂的行为方面表现出了卓越的性能,使其成为机器人操纵和组装任务的理想候选人。此外,整合自然语言处理(NLP)允许多功能任务调理,使机器人能够根据人类指令执行各种任务。
从网络数据中学习可概括的视觉表示已为机器人技术带来了令人鼓舞的结果。然而,预循环方法着眼于预训练2D表示,是应对闭塞的优势,并在复杂的3D场景中准确地将对象定位。同时,3D代表学习仅限于单对象。为了解决这些局限性,我们引入了一个名为Sugar的机器人技术的新型3D预训练框架,该框架通过3D点云捕获对象的语义,几何和负担性能。我们强调了3D表示学习中混乱场景的重要性,并自动构建一个受益于模拟中无需成本监督的多对象数据集。Sugar采用一种多功能变压器的模型来共同解决五个预训练任务,即用于语义学习的跨模式知识蒸馏,以掩盖点建模,以取消几何结构,掌握姿势合成以进行对象负担,3D实例分割和引用表达地面以分析杂乱无章的场景。我们对三个与机器人相关的任务进行了学习的代表,即零射击3D对象识别,引用凸起的接地和语言驱动的机器人操作。实验结果表明,糖的3D表示优于最先进的2D和3D表示。
学期学时20学期 - VI课程代码课程类型学会时间HQ-006古兰经强制性的翻译1 Chem-319物理化学I-I(化学动力学)强制性2 Chem-320物理化学化学(体温动力学)强制性2化学-321物理化学实验室强制性化学1 Chemistory 1 Chemistor 1 Chemistor 1 Chemistor 1 Comportor 2 Comprions 2 Comportion 1 Chemistor 1 Comportor 2 Comistry 1 Comportor 2 Cosistry 2 Comistry 1 Chemistry 1 Comportion 2 Comistor 2 Chem-323 Inorganic Chemistry-II (f-block elements) Compulsory 2 Chem-324 Inorganic Chemistry Lab Compulsory 1 Chem-325 Organic Chemistry-I (Reaction Mechanisms-I) Compulsory 2 Chem-326 Organic Chemistry-II (Spectroscopy) Compulsory 2 Chem-327 Organic Chemistry Lab Compulsory 1
视觉语言(VL)模型最近取得了未经证实的成功,其中连接模块是弥合模式差距的关键。尽管如此,在大多数存在方法中,富裕的视觉线索尚未充分利用。在视觉侧,大多数现有方法仅使用视觉塔的最后一个功能,而无需使用低级功能。在语言方面,大多数现有的方法仅引入浅视力互动。在本文中,我们提出了一个视觉启发的视觉语言连接模块,称为VIVL,该模块有效利用了VL模型的视觉提示。为了利用视觉塔中的较低级别信息,引入了特征金字塔提取器(FPE),以结合不同中间层的特征,该特征将视觉提示与可忽略不计的参数和计算在头顶上。为了实现VL相互作用,我们提出了深视觉条件的提示(DVCP),可以有效地进行视觉和语言特征的深层互动。我们的VIVL超过了以前的最新方法,当时是18.1苹果酒在从头开始训练可可字幕任务,这极大地提高了数据效率。当用作插件模块时,VIVL始终提高各种骨干和VL框架的性能,在多个基准测试中提供新的最新结果,例如Nocaps和VQAV2。
摘要:桥梁损坏检测对于确保桥梁结构的安全性和完整性至关重要。传统的损伤检测方法通常依赖于手动检查或基于传感器的测量结果,这可能是耗时且昂贵的。近年来,计算机视觉技术在桥梁位移测量和损伤检测中显示了有希望。这项研究的目的是从基于计算机视觉的方法测量的位移中提取可靠的特征,这些方法对结构条件变化敏感,同时对操作条件的变化有牢固的变化。特别是,本研究论文使用基于基于计算机视觉的位移测量的横向影响比(DTIR)定义的指标提出了一种新颖的桥梁损伤检测方法。所提出的方法利用计算机视觉算法在移动负载下提取桥梁的位移响应。DTIR指示器定义为在两个相邻梁之间的车辆诱导的桥梁准静态位移比,被提取为对损伤敏感的特征。理论推导证明,DTIR指标仅与车辆在甲板上的结构状况和横向位置有关,而与车辆重量和速度的变化无关。为了验证所提出的方法的有效性,在具有不同结构条件的多束梁桥上进行了一系列驱动实验。结果证明了所提出的方法准确检测结构损伤的发生和可能位置的能力。此外,本文讨论了用于桥梁损坏检测的DTIR指标的优点和局限性,以及如何将所提出的方法推广到具有两个以上的交通车道的桥梁。总而言之,提出的方法为在操作条件下的桥梁提供低成本,易于部署和可扩展的健康监控解决方案提供了有希望的解决方案。
哺乳动物的视觉系统由平行的分层专业途径组成。不同的途径在使用更适合支持特定下游行为的表示形式方面是专门的。在特定的情况下,最清楚的例子是视觉皮层的腹侧(“ What what”)和背(“ Where”)途径的专业化。这两种途径分别支持与视觉识别和运动有关的行为。至今,深度神经网络主要用作腹侧识别途径的模型。但是,尚不清楚是否可以使用单个深ANN对两种途径进行建模。在这里,我们询问具有单个损失函数的单个模型是否可以捕获腹侧和背途径的特性。我们使用与其他哺乳动物一样的小鼠的数据探讨了这个问题,这些途径似乎支持识别和运动行为。我们表明,当我们使用自我监督的预测损失函数训练深层神经网络体系结构时,我们可以在拟合鼠标视觉皮层的其他模型中胜过其他模型。此外,我们可以对背侧和腹侧通路进行建模。这些结果表明,应用于平行途径体系结构的自我监督的预测学习方法可以解释哺乳动物视觉系统中看到的一些功能专业。
