i. 牛顿力学 ii. 哈密顿力学 iii. 拉格朗日力学 iv. 波动力学 (1) 简正模 (2) 波叠加 (3) 经典谐振子 v. 统计物理学 (1) 热力学定律 (2) 玻尔兹曼分布、泊松分布、二项分布、几何分布 (3) 熵及其与温度和信息的关系 (4) 配分函数 (5) 微正则系综 (6) 正则系综 vi. 相对论 (1) 狭义相对论 (2) 洛伦兹变换 (3) 长度收缩 (4) 时间膨胀 (5) 时空图 (6) 引力 b. 量子物理学
特殊量子态用于计量学,以实现低于经典行为状态 1,2 所确定的极限的灵敏度。在玻色子干涉仪中,压缩态 3、数态 4,5 和“薛定谔猫”态 5 已在各种平台上实现,并且与使用相干态的干涉仪相比,其测量精度更高 6,7 。另一种在计量学上有用的状态是两个具有最大能量差异的本征态的相等叠加;理想情况下,这种状态可以达到量子力学所允许的最大干涉灵敏度 8,9 。这里我们展示了在谐振子的情况下这些量子态的增强灵敏度。我们扩展了现有的实验技术 10,以创建高达 n = 100 的阶数状态,并在单个捕获离子的运动中生成谐振子基态和形式为 ∣ ⟩ ∣ ⟩ + n ( 0 ) 1 2 的数态的叠加,其中 n 高达 18。虽然实验不完善使我们无法达到理想的海森堡极限,但我们观察到对机械振荡器频率变化的灵敏度增强。这种灵敏度最初随 n 线性增加,在 n = 12 时达到最大值,与具有相同平均占据数的相干态的理想测量相比,我们观察到计量增强了 6.4(4) 分贝(不确定度是平均值的一个标准差)。这样的测量应该提供改进的特性
所谓的达布 III 振子是定义在具有非常量负曲率的径向对称空间上的精确可解的 N 维非线性振子。该振子可以解释为通常的 N 维谐振子的平滑(超)可积变形,其非负参数 λ 与底层空间的曲率直接相关。本文详细研究了达布 III 振子的量子版本的香农信息熵,并分析了熵和曲率之间的相互作用。具体而言,在 N 维情况下可以找到位置空间中香农熵的解析结果,并且在曲率 λ → 0 的极限下可以恢复 N 维谐振子量子态的已知结果。然而,达布 III 波函数的傅里叶变换无法以精确形式计算,从而阻碍了对动量空间中信息熵的解析研究。尽管如此,我们已经在一维和三维情况下对后者进行了数值计算,并且我们发现通过增加负曲率的绝对值(通过更大的 λ 参数),位置空间中的信息熵会增加,而在动量空间中的信息熵会变小。这个结果确实与这个量子非线性振荡器的波函数的扩散特性一致,这在图中得到了明确展示。位置和动量空间中的熵之和也根据曲率进行了分析:对于所有激发态,这种总熵都会随着 λ 的减小而减小,但对于基态,当 λ 消失时,总熵最小,相应的不确定性关系始终得到满足。© 2022 作者。由 Elsevier BV 出版这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
2 量子动力学 62 2.1 时间演化和薛定谔方程 62 2.1.1 时间演化算符 62 2.1.2 薛定谔方程 65 2.1.3 能量本征函数 67 2.1.4 期望值的时间依赖性 68 2.1.5 自旋进动 69 2.1.6 中微子振荡 71 2.1.7 关联振幅和能量-时间不确定性关系 74 2.2 薛定谔与海森堡图景 75 2.2.1 幺正算符 75 2.2.2 薛定谔和海森堡图景中的状态函数和可观测量 77 2.2.3 海森堡运动方程 78 2.2.4 自由粒子:艾伦费斯特定理 79 2.2.5 基态和跃迁振幅 81 2.3 简谐振子 83 2.3.1 能量本征态和能量本征值 83 2.3.2 振荡器的时间发展 88 2.4 薛定谔波动方程 91 2.4.1 时间相关波动方程 91 2.4.2 时间无关波动方程 92 2.4.3 波函数的解释 94 2.4.4 经典极限 96 2.5 薛定谔波动方程的基本解 97 2.5.1 三维自由粒子 97 2.5.2 简谐振子 99 2.5.3 线性势 101 2.5.4 WKB(半经典)近似 104 2.6 传播子和费曼路径积分 108 2.6.1 波动力学中的传播子 108 2.6.2 作为过渡振幅的传播子 112 2.6.3 作为路径总和的路径积分 114
两级系统(量子比特)和量子谐振子在这一物理学中发挥着重要作用。量子比特是信息载体,而振荡器充当将量子比特连接在一起的存储器或量子总线。将量子比特与振荡器耦合是腔量子电动力学 (CQED) 和电路量子电动力学 (Circuit- QED) 的领域。在微波 CQED 中,量子比特是里德堡原子,振荡器是高 Q 腔的一种模式,而在电路 QED 中,约瑟夫森结充当人造原子,扮演量子比特的角色,振荡器是 LC 射频谐振器的一种模式。
摘要:玻色子量子器件提供了一种实现量子计算的新方法,其中量子两能级系统(量子比特)被量子(非)谐振子(量子模式)取代,作为量子模拟器的基本构建块。然后可以通过用玻色子算符表示或映射系统汉密尔顿量来实现化学结构和动力学的模拟。在本文中,我们回顾了使用玻色子量子器件解决各种具有挑战性的化学问题的最新进展和未来潜力,包括分子振动电子谱的计算、气相和溶液相绝热和非绝热化学动力学的模拟、分子图论问题的有效解决以及电子结构的计算。
摘要 量子计算机是模拟多体量子系统的有前途的工具,因为它们比传统计算机具有潜在的扩展优势。虽然人们在多费米子系统上投入了大量精力,但在这里我们用收缩量子特征求解器 (CQE) 模拟了一个模型纠缠的多玻色子系统。我们通过在量子比特上编码玻色子波函数将 CQE 推广到多玻色子系统。CQE 为玻色子波函数提供了一个紧凑的假设,其梯度与收缩薛定谔方程的残差成正比。我们将 CQE 应用于玻色子系统,其中 N 个量子谐振子通过成对二次排斥耦合。该模型与量子设备上分子系统中耦合振动的研究有关。结果表明,即使在存在噪声的情况下,CQE 也能以良好的精度和收敛性模拟玻色子过程(例如分子振动)。
我们从理论上研究了 Dicke 量子电池中充电功率的增强,该电池由耦合到单模腔光子的 N 个两能级系统 (TLS) 阵列组成。在 N 较小的极限下,我们解析地解决了完全充电过程的时间演化。发现驱动哈密顿量的特征向量是伪埃尔米特多项式,因此演化被解释为类似谐振子的行为。然后我们证明,在传输相同数量的能量时,使用集体协议的平均充电功率比并行协议大 N √ 倍。与之前的研究不同,我们指出这种量子优势不是源于纠缠,而是由于 TLS 之间的相干协同相互作用。我们的结果为 Dicke 电池的动态充电过程提供了直观的定量洞察,并且可以在真实的实验条件下观察到。