在外部和内部空气动力学中,预测和控制边界层内的湍流发生都至关重要。1,2 数值研究在这两个领域都得到了卓有成效的应用,但实验是必不可少的,特别是当马赫数增加时。3,4 自然边界层转捩实验需要一种对转捩过程干扰尽可能小的设备。例如,在超音速马赫数下,设备不得产生强烈的压力波动,即它们的 RMS 应小于 p ∞ 的 1% 左右,5 且速度波动应受到限制。6 如果不是这样,p ′ 和 u ′ 对转捩过程的影响将阻碍将实验结果外推到实际飞行条件。 7 已经证明 7 超音速风洞试验段内压力波动的主要原因是试验段壁上的湍流边界层,它会将压力扰动辐射到测试物体上。因此,进行有意义的过渡实验的解决方案是保持这些壁上的边界层层流。也就是说,要有一个所谓的“安静的超音速风洞”。要达到这种安静程度,必须实现多个功能,通常需要进行调整、修正或改进和修改,然后才能明显发挥作用。8,9 另一方面,对于诱导边界层过渡实验,安静要求不那么严格
最近,研究人员使用细长的静压探头在 Longshot 高超声速风洞的自由流中进行测量。他们发现,压力大于假设等熵喷嘴流获得的理论值。现在研究了喷嘴膨胀过程中流动凝结的存在,这可能是非等熵性的来源,以解释自由流静压不匹配。研究了不同的停滞温度,它们会延迟或促进流动成核。经证实,Longshot 风洞的标准操作条件没有凝结。在较低停滞温度下进行的实验成功促进了氮的凝结,静压探头可以检测到。与异质成核理论一致,已经实现了微弱的流动过饱和。证明了静压探头的精确性能及其对高超声速流动表征的实用性。
*1 C F RP:碳纤维增强塑料 *2 F W:纤维缠绕,缠绕涂有树脂的碳纤维并使树脂固化形成电机外壳的方法 div>
刘易斯研究中心的 8 x 6 英尺超音速风洞 (SWT) 可供合格研究人员使用。本手册包含风洞性能图,其中显示了总温度、总压力、静压、动压、高度、雷诺数和质量流量随测试段马赫数变化的范围。这些图适用于空气动力学和推进循环。8 x 6 英尺超音速风洞是一个大气设施,其测试段马赫数范围为 0.36 至 2.0。还描述了一般支持系统(空气系统、液压系统、氢系统、红外系统、激光系统、激光片系统和纹影系统)以及仪器和数据处理和采集系统。概述了预测试会议格式。还说明了隧道用户责任和个人安全要求。
航空系 (DFAN) 自 1955 年美国空军学院 (USAFA) 成立以来就一直存在,自 1967 年起提供认可的航空工程学位。DFAN 始终致力于 USAFA 独特而主要的使命宣言:教育、培训和激励男女军官成为有品格的军官,有志于领导美国空军为国家服务。1 学员(军官候选人)将通过 ABET 认可的课程、密集的领导力实验室环境、全面的同伴驱动的品格发展计划和艰苦的体能训练来挑战和拓展他们的知识和智力。他们接触到世界一流军事空中和太空部队的方方面面。许多人在他们的学员生涯中第一次在各种训练项目中体验到飞行的自由和纪律。毕业生离开 USAFA 时将获得理学学士学位和少尉军衔。他们加入了致力于领导飞行员的“长蓝线”军官队伍。他们以武器系统操作员、技术专家、专家或研究生的身份继续接受教育和服务。虽然军官的发展通过综合军事训练计划得到重视,包括领导力发展、身体素质、运动竞赛和飞行训练,但学员发展的核心是一套由 102 个学术课程组成的强大核心课程
图 1. 兰利 11 英寸高速风洞 [4]。© NASA。保留所有权利。 ...................................................... 9 图 2. 兰利 11 英寸 HST 示意图 [3]。© NASA。保留所有权利。 ...................................................... 9 图 3. 进气式超音速风洞的总体配置。 ............................................................................. 12 图 4. 排污式超音速风洞的总体配置 [17] © Wikimedia Commons。保留所有权利 .................................................................................................................... 13 图 5. 超音速扩散器中的冲击波系统 [15]。© Lehrstuhl fur Thermodynamik。保留所有权利。 .................................................................................................................................................... 15 图 6. 超音速喉管下游的特性线 ...................................................................................................... 19 图 7. 拐角处超音速气流引起的膨胀风扇 ...................................................................................... 19 图 8. 某一点的特性几何形状和冲击特性 ...................................................................................... 20 图 9. WPI 真空测试设施 (VTF) ............................................................................................................. 25 图 10. 质量流速与喉管面积的关系。使用公式 4 在 MATLAB 中创建。 ................................................
本研究涉及光束-目标相互作用模拟的开发和验证,以确定给定目标几何形状、表面辐射强度和自由流条件的目标温度分布随时间的变化。通过数值和实验研究了湍流超音速流动的影响。实验在弗吉尼亚理工大学超音速风洞中进行,喷嘴速度为 4 马赫,环境总温度,总压力为 1。1 × 10 6 Pa,雷诺数为 5 × 10 7 / m。目标由涂成平黑色的 6.35 毫米不锈钢板组成。用 300 瓦连续光束镱光纤激光器照射目标,产生 4 毫米高斯光束,光束直径为 1.08 微米,距前缘 10 厘米,其中存在 4 毫米湍流边界层。吸收的激光功率为 65、81、101、120 瓦,最大热通量在 1035 至 1910 W/cm2 之间。使用中波红外摄像机测量目标表面和背面温度。还使用八个 K 型热电偶测量背面温度。进行了两次测试,一次是流动,另一次是流动。对于流动情况,隧道启动后开启激光器,流动达到稳定状态。对于流出情况,板以相同功率加热,但没有超音速流动。通过从流出温度中减去流动温度可以看到冷却效果。此温度减法有助于消除偏差误差,从而显着降低整体不确定性。使用 GASP 共轭传热算法模拟 81 和 65 瓦的实验。大多数计算都是使用 Spalart-Allmaras 湍流模型在 280、320 单元网格上进行的。进行了网格收敛研究。与 65 瓦的情况相比,81 瓦的情况显示出更多的不对称性,并且在上游发现了一个冷却增加的区域。通过热电偶和红外温度测量也可以看到背面的不对称性增加。对于流出的情况,计算低估了表面温度 7%。对于 65 瓦和 81 瓦的情况,靠近中心的表面冷却都被低估了。对于所有功率设置,对流冷却都会显著增加达到给定温度所需的时间。
这些显示了通过更好的发动机,结构或空气动力学的范围,有效载荷,有效的起飞重量或经济学的改进。此参考概念还用于研究机身螺旋式整体问题,测量起飞和降落噪声的改善,甚至用于为减少噪声等领域开发新的飞行程序。应该清楚地认识到这些参考飞机不是什么。它们不是飞机程序的初步设计。它们不是任何人都会建造或提供给世界航空公司的构想。用于这些目的的飞机设计需要大量的开发和证实,几个数量级比现实的技术测量目的所需的数量级要大。在本文中提到飞机时,请认识到它们是出于参考目的,用于测量改进以及对问题领域的了解;
委员会成员批准了 Joji Matsumoto Frank K. Lu 的硕士论文 ___________________________________________