电池储能对于提供经济实惠的清洁能源至关重要,同时还能提高英国电网的可靠性。Hams Hall 站点拥有 350 兆瓦的输电网络连接,能够为大约 12 万户家庭提供能源。经批准的设计允许部署超过 1,750 兆瓦时的电池储能。Hams Hall 项目预计将提供广泛的服务以支持英国电力系统,包括可能持续更长时间的服务,持续时间可能超过五小时。
[00:09:37] FLØTTUM:下午好。我非常高兴地欢迎挪威卑尔根大学礼堂的观众以及世界各地的观众参加今年的霍尔伯格辩论会。我的名字是 Kjersti Fløttum,我是霍尔伯格委员会主席。霍尔伯格奖是授予人文、社会科学、法律和神学领域杰出学者的最大国际奖项之一。该奖项由挪威政府于 2003 年设立,以纪念科学家和作家路德维希·霍尔伯格,他生活在 1684 年至 1754 年。除了每年为庆祝霍尔伯格奖获得者而举办的学术活动外,霍尔伯格辩论会每年 12 月举行,以纪念路德维希·霍尔伯格的启蒙思想。辩论旨在让杰出的学者和非学者参与对我们时代紧迫问题的公开辩论。今年辩论的主题是当前我们面临的全球安全危机。我们将特别关注乌克兰、俄罗斯、中国和西方——以及什么样的力量和威慑力可以防止未来的战争或现有冲突的升级。我们将辩论命名为“恐惧能让我们安全吗?”我们很高兴邀请到芝加哥大学的约翰·米尔斯海默教授和瑞典前首相卡尔·比尔特先生参加小组讨论。我们也非常高兴邀请到塞西莉·赫勒斯特维特博士,她将主持本次活动。赫勒斯特维特是挪威科学院的冲突研究员
摘要:自旋效应的纳米振荡器在当前可用的CMO设备之外有望,并且有可能用于模仿计算神经元系统中神经元的功能。当它们在4-20 GHz范围内振荡时,它们有可能用于构建高速加速的神经硬件平台。然而,由于它们的产出极低的信号水平和高阻抗以及其微波范围的工作频率,因此,当使用CMOS技术实施其状态读出电路时,SHNO是否振荡是否会带来巨大的挑战。本文介绍了第一个CMOS前端读出电路,该电路在180 nm上实施,以shno振荡频率高达4.7 GHz,设法辨别了100 µV的SHNO SHNO幅度,即使对于障碍物的障碍也达到300ω,并且噪声效果高达300ω,并且噪声效果为5.3 db db 300ω。提出了该前端的设计流以及其每个块的架构。对低噪声放大器的研究在设计中的固有困难中加深了深化,满足了SHNOS的特征。
15214095,2023,11,从https://onlinelibrary.wiley.com/doi/10.1002/adma.202207622下载,科学和技术信息办公室,Wiley在线图书馆,wiley在线图书馆[16/08/2024]。有关使用规则,请参见Wiley Online Library上的条款和条件(https://onlinelibrary.wiley.com/terms-and-conditions); OA文章由适用的Creative Commons许可
摘要 本文旨在通过对俄罗斯联邦天体安全政策进行案例研究,为新现实主义在外层空间安全事务方面的有限学术领域做出贡献。近年来,俄罗斯已成为国际外层空间政治的关键参与者之一。然而,俄罗斯发展太空防御资产的同时,在国际组织中发起外交倡议,呼吁避免外空军备竞赛的战略是模糊的。我认为,新现实主义范式通过强调当代外层空间安全事务日益加剧的平衡轨迹阐明了这一案例。首先,从新现实主义对陆地国际政治的学术研究中得出关于国家在外层空间军备和军备控制领域行为的假设。然后针对俄罗斯的太空安全政治案例进行假设检验。有人认为,俄罗斯采用内外平衡的混合策略,并务实地利用国际机构来利用其在外层空间的经济劣势地位,与美国展开以竞争为主的行动。
在旋转电流的生成,控制和检测中进步,并且电荷 - 自旋互转换在这些过程中起着基本作用。[2–4]电荷和自旋电流之间的互音版本取决于两个现象:旋转大厅(SHA)和旋转霍尔(ISHE)效应,这些效应允许在横向旋转电流中转换电流电流,反之亦然,而具有大型旋转 - 轨道 - 轨道 - 轨道 - 轨道 - 轨道 - 轨道互联网(SOI)。[2-5]研究这些过程的基本系统是正常的金属(NM)/磁性材料(M)双层,这是由复杂的自旋混合结构G↑↑州= G R + Ig I的旋转传输跨NM/ M界面。[6]当自旋电流到达NM/M界面时,可以根据M材料的磁磁为m和旋转极化σ的磁磁(由于σ和m为非collineare exter exters exters extere extere and CollineARINERINE)的磁极偏振电流(g r and g r and g r and g r and i与damping like compand coptime coptimeclike和dymeke like compected promeke and tor pemplice),可以吸收或反射。[7]此外,当σ与σ呈线时,自旋 - 链接电导(G s)[8]与界面处的自旋挡泥散射有关。但是,其他界面效应,例如,磁接近效应,[9] Rashba-Edelstein效应[10]或[10]或Nomal nomal nomal nomalos nomal onomal onals onaloal nomal onals onaloal nomal onaloal nomal onaloal nomal onnomal效果,也可能会播放clinef的作用。由于旋转设备的开发必然涉及自旋电流的流动,因此界面的重要性及其适当的表征是显而易见的。[12]因此,具有正确的材料和正确的表征技术对于旋转的发展至关重要。幸运的是,可用于研究通过NM/M界面的自旋传输的理想技术,即自旋霍尔磁磁性(SMR)。smr是由She和Ishe同时作用引起的非平衡接近效应。[7,13] Being sensitive only to the magnetic properties of the topmost atomic layers of the magnetic material, M, close to the NM/M interface, [14,15] SMR allows to study interfacial magnetic proper- ties of magnetic materials in contact to NM via magnetotrans- port experiments and to determine important parameters, such as spin diffusion length, λ sd , and the spin Hall angle, Θ SH , of different NM层或不同的自旋电导。SMR已用于研究几种磁性绝缘材料中的磁性结构,包括铁磁性,[13,16,17]和反磁性有序。[18,19]此外,SMR已证明
一个单个铁磁kagome层被预计将实现具有量化霍尔电导的Chern绝缘子,在堆叠后可以变成具有较大异常霍尔效应(AHE)和磁性光学活性的Weyl Semimetal。的确,在Kagome双层材料Fe 3 Sn 2中,检测到了一个大的AHE。为了直接探测负责任的频带结构的特征,我们除了在广泛的频率范围内的对角光导率外测量光霍尔电导率光谱。由于前者是对AHE的固有贡献的能量选择性度量,因此我们借助从第一个原理计算获得的动量和带分解的光学传导频谱来确定它们的共同起源。我们发现,低能量的转变,在动量空间中追踪“螺旋体积”,让人联想到以前预测的螺旋结节线,从而实质上有助于AHE,这进一步增加了来自多个高能量互动过渡的贡献。我们的研究还表明,在这种库莫磁铁中,局部库仑相互作用导致了Fermi水平附近的显着带重建。
光子自旋霍尔效应(SHE)是指光束通过光学界面或非均匀介质后,具有相反自旋角动量的光子发生横向自旋分离,表现为自旋相关分裂。它可以被认为是电子系统中的自旋霍尔效应的类似物:光的右旋圆偏振和左旋圆偏振分量分别充当自旋向上和自旋向下的电子,折射率梯度代替了电子势梯度。值得注意的是,光子自旋霍尔效应源于光子的自旋轨道相互作用,主要归因于两个不同的几何相位,即动量空间中的自旋重定向Rytov-Vlasimirskii-Berry相位和Stokes参数空间中的Pancharatnam-Berry相位。光子自旋谐波的独特性质及其强大的操控光子自旋的能力,逐渐使其成为精密计量、模拟光学计算和量子成像等领域的有用工具。在本综述中,我们提供了一个简要的框架来描述光子自旋谐波的基本原理和进展,并概述了该现象在不同场景中的新兴应用。
磁性赛道存储器。[7,8] 自旋流可通过自旋霍尔效应 (SHE) 由电荷电流产生。人们对某些类别的高质量晶体化合物产生了浓厚的兴趣,这些化合物可产生源自此类材料本征电子能带结构的较大自旋霍尔效应:[9,10] 此类材料包括拓扑绝缘体 [11–13] 以及狄拉克和外尔半金属 [14–16]。然而,在这里,我们展示了非常大的自旋霍尔效应,它是由室温下由 5 d 元素和铝形成的高阻合金中的外部散射产生的,在实际应用中非常有用。自旋轨道相互作用 (SOI) 在自旋霍尔效应中起着核心作用,通常原子序数 Z 越大,自旋霍尔效应越大。此外,化合物或合金中组成元素的 Z 值差异越大,外部散射就越大,因此 SHE 也越大。[17,18] 在这方面,将铝等轻金属与 5 d 过渡金属合金化预计会产生较大的外部 SHE。[19] 在本文中,我们表明 M x Al 100 − x(M = Ta、W、Re、Os、Ir 和 Pt)合金不仅电阻率 ρ 发生剧烈变化,而且自旋霍尔角 (SHA) θ SH 和自旋霍尔 (SHC) σ SH 也随其成分 x 而变化。我们发现,在许多情况下,在临界成分下,会从高度无序的近非晶相转变为高度结晶相。此外,我们发现电阻率和 SHA 在外部散射最大化的非晶-结晶边界附近表现出最大值。为了支持这一猜想,我们发现最大电阻率的大小和相应的 SHA 随 Z 系统地变化。这表明 5 d 壳层的填充起着至关重要的作用,因为电阻率和 SHA 与 M 的 5 d 壳层中未配对电子的数量有关,因此当 M = Re 或 Os 时,ρ 表现出最大值(根据洪特规则,未配对 d 电子的数量分别为 5、6)。我们发现电阻率与 SHA 大致成线性比例,因此与 θ SH 成反比的功耗( / SH 2 ρ θ ≈ )在最大 SHA 时最小。[20] 因此,我们发现 M x Al 100 − x 是功率较小的优良自旋轨道扭矩 (SOT) 源
Heather Hall 女士是海军情报局的首席人力资本官 (CHCO)。在此职位上,她负责政策和战略层面的规划,以实施人力资源计划和政策,以支持劳动力规划、获取、发展和保留。Hall 女士是海军情报界制定和实施人力资本计划的主要顾问和首席管理官员。Hall 女士于 2022 年 5 月入选高级职位,拥有超过 14 年的联邦服务经验。从 2018 年 6 月到 2022 年 5 月,Hall 女士担任海军情报活动的民事人力资源 (DCHR) 主任。在此职位上,她负责监督所有人力资源 (HR) 职能领域、计划和政策执行,为海军情报局提供建议和指导;领导海军情报界处理紧急优先事项,制定内部和外部计划和流程,并为整个 N1 的行政和业务运营提供内部管理和计划监督。在担任 DCHR 现任职位之前,Hall 女士曾担任海军部民事人力资源办公室 (OCHR) 主任的参谋长。Hall 女士为主任提供人力资源建议和指导,领导紧急计划或项目,并简化组织内部的行政和业务运营。Hall 女士于 2014 年加入 DON,来自陆军部民事人力资源局 (CHRA) 总部。在那里,Hall 女士担任行动官,领导许多项目。最值得注意的是,她领导民事人力资源局完成了生活区津贴审计,并因其工作获得了指挥官奖。Heather 于 2008 年在国防后勤局开始了她的职业生涯,在那里她学习了民用人力资源生命周期管理流程。Hall 女士曾两次获得功勋文职服务奖,一次由陆军部于 2011 年颁发,另一次由国防部于 2015 年颁发。Hall 女士拥有宾夕法尼亚州立大学美国研究学士学位、康奈尔大学人力资源专业学位,并毕业于联邦行政学院——民主社会领导力项目。2022 年 5 月更新