通常,Mxenes具有三个公式:m 2 x,m 3 x 2和m 4 x 3(m =早期过渡金属和x = c或n)。在m 2 x中,过渡金属原子形成蜂窝状晶格,另一个过渡金属原子在蜂窝晶格的中心发现。它显示了平面内化学排列,也称为i-Mxene。然而,M 3 x 2和m 4 x 3从平面化学排序(称为O-Mxene)中显示出,其中过渡金属原子位于周长层中,而其他原子占据了中心层。23 i-mxenes也可以通过将1/3的外国过渡金属或稀土元件m*替换为m 2 x中的m*,即(M 2/3 m* 1/3)2X。24 m*可能是磁性或非磁性(NM),具体取决于我们的选择。另一方面,O-Mxenes由公式M 2 m* x 2或m 2 m* 2 x 3表示。mxenes。 ,最大(m n +1 ax n)陶瓷,称为最大相。 使用HF,LIF/HCl或NH 4 HF 2溶液选择性蚀刻M N +1 AX N的去除,从而产生单片或几张extriention Metal,称为MXENES。 在公式m n +1 ax n中,m项表示早期过渡金属元件,例如ti,zr等,而a则指的是si,al等组IIIA或IVA元素,例如Si,Al等;另一方面,X项表示C,N或两者兼而有之。 最大阶段已知具有生长间结构,最大(m n +1 ax n)陶瓷,称为最大相。使用HF,LIF/HCl或NH 4 HF 2溶液选择性蚀刻M N +1 AX N的去除,从而产生单片或几张extriention Metal,称为MXENES。在公式m n +1 ax n中,m项表示早期过渡金属元件,例如ti,zr等,而a则指的是si,al等组IIIA或IVA元素,例如Si,Al等;另一方面,X项表示C,N或两者兼而有之。最大阶段已知具有生长间结构
特别适用于为模仿生物微型游泳者的微电机提供拍打和/或旋转驱动。开创性的例子是 Dreyfus 等人建造的游泳者,它由一串拴在红细胞上的磁珠组成。[25] 在这里,游泳以衍生方式诱导精子,即通过拍打一个支持弯曲波传播的柔性附属物。自这一突破以来,已经制造出几种其他受生物启发的磁性微型游泳者,包括由定制微磁体、软磁复合材料和众多结构制成的微型游泳者,其中磁性区域驱动非磁性鞭毛/附属物。[13,15,16,20,26–29] 人们越来越多地研究附属物结构对游泳表现的影响,表明无论是生物系统还是合成系统,游泳速度都会随其长度、弹性和划水频率而变化。 [15,26,28,30] 此外,已确定生物微游泳者的集体相互作用微妙地依赖于鞭毛 (附属物) 耦合动力学和鞭毛下长度尺度上产生的流动。 [30] 这些相互作用在自然界中被用来提高性能:例如,老鼠精子形成长序列以提高其速度。 [7,10,30–33] 尽管如此,对合成系统的附属物设计进行严格控制仍然很困难,当需要纳米级特征时更是如此。 在纳米尺度上实现这种控制的一种特别有前途的方法是 DNA 自组装,正如 Maier 等人所采用的,用于生成基于 DNA 瓦管束的合成鞭毛。 [26] 当连接到旋转的磁珠上时,这些束通过水动力学组装成几微米的螺旋状结构,以类似于细菌的方式驱动平移运动。尽管组装技术可以精确控制合成鞭毛的扭曲和硬度,但它们的长度容易发生寡聚化并且不受控制。在本文中,我们基于 Maier 等人的工作,使用另一种 DNA 自组装策略,即 DNA 折纸。在这里,一个由 8634 个核苷酸组成的单链 DNA 环通过单链 DNA 寡聚体的特定结合以预定方式折叠,以构建定制的、尺寸可控的纳米级附加物。[34–37] 我们提出了一种调节附加物在磁珠上的覆盖率的方法,使其均匀或对称性破缺。通过时间相关磁场摇动这些结构时,我们发现,虽然完全被 DNA 折纸覆盖的结构主要表现出布朗动力学,
特别有用,可将跳动和/或旋转驱动对模仿生物学微晶状体的微动体。开创性的例子是Dreyfus等人建造的游泳者。由一连串的杂志珠束缚在红细胞上。[25]在这里,游泳是以衍生方式诱导的精子,也就是说,通过击败支持弯曲波传播的柔性附属物。自从这一突破以来,已经制造了其他几种生物启发的磁性微晶状体,包括由定制的微型磁铁,软磁复合材料和众多体系结构制成的,其中磁性区域会使非磁性鞭毛/附属物依赖。[13,15,16,20,26–29]越来越多地,正在研究附属物对游泳性能的作用,这表明游泳速度随生物学和合成系统的长度,弹性和中风频率而变化。[15,26,28,30]此外,已经确定,生物微晶状体的集体相互作用非常依赖于耦合的鞭毛(附录)动力学和流动在亚氟lagellum长度尺度上产生的动力学。[30]这些相互作用在本质上被利用以促进性能:例如,小鼠精子形成长列火车以提高其速度。[7,10,30–33]然而,对合成系统的附属物设计的严格控制仍然是征税,当需要纳米级特征时,更是如此。通过Maier等人采用的DNA自我组装是DNA的一种特别有希望的方法。基于DNA瓷砖管束生成合成的鞭毛。[26]将这些束式水力组装成旋转的磁珠时,将水力组装成类似几微米的开瓶器样式确认,以类似于细菌的方式驱动翻译运动。尽管组装技术允许对合成鞭毛的扭曲和刚度进行精美的控制,但它们的长度受到寡聚和不受控制的影响。在这种交流中,我们以Maier等人的工作为基础。使用替代DNA自组装策略DNA折纸。此处,通过单链核苷酸的单链DNA环通过单链DNA低聚物的特定结合以构建定位的纳米级附件,以预先确定的方式折叠。[34–37]我们提出了一种调节附属物覆盖磁珠上均匀或用断裂的对称性的方法。通过时间依赖的磁场摇动这些构建体,我们发现虽然结构完全覆盖了DNA折纸,但在很大程度上表现出了
苏迪普托;巴斯,拉维·N;戈萨尔,苏吉特; Padmanabham,G 智能制造杂志,2018,29,175-190 54. Sahoo, Santosh Kumar;比绍伊,比布杜塔;莫汉蒂,乌彭德拉·库马尔; Sahoo,Sushant Kumar;萨胡,贾姆贝斯瓦尔;沐浴,拉维·纳图拉姆 (Ravi Nathuram);激光束焊接对工业纯钛微观结构和力学性能的影响印度金属研究所学报 70 1817-1825 2017 55. S. Pradheebha、R. Unnikannan、Ravi N. Bathe、K. Chandra Devi、G. Padmanabham 和 R. Subasri;纹理对溶胶-凝胶纳米复合涂层表面润湿性的影响国家技术杂志 13 3 19-23 2017 56. Narsimhachary,D;巴斯,RN; Dutta Majumdar,J;帕德马纳巴姆,G;巴苏,A; 6061-T6铝合金双道激光焊缝组织与力学性能。工程中的激光 (Old City Publishing) 33 2016 57. Rikka, Vallabha Rao; Sahu,Sumit Ranjan;塔德帕利,拉贾帕;巴斯,拉维;莫汉,泰雅加拉詹;普拉卡什,拉朱;帕德玛纳布姆,加德;戈帕兰,拉加万;用于锂离子电池外壳的脉冲激光焊接不锈钢和铝合金的微观结构和力学性能 J Mater Sci Eng B 6 9–10 218-225 2016 58. Moharana, Bikash Ranjan; Sahu,Sushanta Kumar; Sahoo,Susanta Kumar;巴斯,拉维;通过 CO2 激光对 AISI 304 至 Cu 接头的机械和微观结构性能的实验研究工程科学与技术,国际期刊 19 2 684-690 2016 59. Bathe, Ravi;赛克里希纳,V;尼库姆布,SK; Padmanabham,GJAPA;灰铸铁的激光表面纹理化以改善摩擦学行为应用物理 A 117 117-123 2014 60. Bathe, R;帕德马纳巴姆,G;热障涂层高温合金中激光钻孔的评估材料科学与技术 30 14 1778-1782 2014 61. Bathe, Ravi;辛格,阿希什 K;帕德马纳巴姆,G;脉冲激光修整金属结合剂金刚石砂轮对切削性能的影响材料与制造工艺 29 3 386-389 2014 62. Narsimhachary,D;巴斯,拉维·N;帕德马纳巴姆,G;巴苏,A; 6061 T6铝合金激光焊接温度分布对微观组织和力学性能的影响材料与制造工艺 29 8 948-953 2014 63. Yagati, Krishna P;巴斯,拉维·N; Rajulapati,Koteswararao V; Rao,K Bhanu Sankara;帕德马纳巴姆,G;铝合金与钢的无焊剂电弧焊接钎焊材料加工技术杂志 214 12 2949-2959 2014 64. Nikumb, Suwas;巴斯,拉维;克诺夫,乔治 K;汽车、柔性电子和太阳能领域的激光微加工技术 太阳能、显示器和光电子设备的激光加工和制造 III 9180 17-26 2014 65. Padmanabham, G;克里希纳·普里亚,Y;帕尼·普拉巴卡,KV;拉维,N;洗澡,BhanuSankara Rao;P-MIG 和冷金属转移 (CMT) 工艺制成的铝钢接头界面特性和力学性能比较焊接研究趋势:第 9 届国际会议论文集 227-234 2013 66. Bathe, G. Padmanabham 和 Ravi;材料激光加工的应用 Kiran 24 2 2013 年 3 月 14 日 67. Padmanabham, G; Priya, Y Krishna; Prabhakar, KV Phani; Bathe, Ravi N;脉冲 MIG 和冷金属转移 (CMT) 工艺制成的铝钢接头界面特性和力学性能比较焊接研究趋势 2012:第 9 届国际会议论文集 227 2013 68. Chaki, Sudipto;Ghosal, Sujit; Bathe, Ravi N; 使用 GA-ANN 混合模型对脉冲 Nd:YAG 激光切割铝合金板的切口质量预测和优化国际机电一体化与制造系统杂志 5 4-Mar 263-279 2012 69. Sanikommu, Nirmala;Bathe, Ravi;Joshi, AS;激光冲击钻孔中的突破检测。工程激光(Old City Publishing)17 2007 70. Jejurikar, Suhas M;Banpurkar, AG;Limaye, AV;Patil, SI;Adhi, KP;Misra, P;Kukreja, LM;Bathe, Ravi;通过脉冲激光沉积在 Si(100)上沉积的异质外延 ZnO 薄膜的结构、形态和电学特性:空气中退火(800 C)的影响 应用物理学杂志 99 1 2006 71. Sahasrabudhe, MS; Patil, SI; Date, SK; Adhi, KP; Kulkarni, SD; Joy, PA; Bathe, RN;磁性(Fe+ 3)和非磁性(Ga+ 3)离子掺杂在 Mn 位对 La0. 7Ca0. 3MnO3 传输和磁性的影响 固态通信 137 11 595-600 2006 72. Ogale, SB; Bathe, RN; Choudhary, RJ; Kale, SN; Ogale, Abhijit S; Banpurkar, AG; Limaye, AV;边界效应对薄沉降颗粒堆稳定性的影响 Physica A: 统计力学及其应用 354 49-58 2005 73. Alves, G; Doerr, TP; Arenzon, JJ; Levin, Y; Avelar, AT; Monteiro, PB; Bai, BD; Jiang, W; Banpurkar, AG; Ogale, SB;第 354 卷作者和论文索引 psychology 354 463 2005 74. Sahasrabudhe, MS; Bathe, RN; Sadakale, SN; Patil, SI; Date, SK; Ogale, SB;La0. 7Ca0. 3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和Ravi N; 使用 GA-ANN 混合模型对脉冲 Nd:YAG 激光切割铝合金板的切口质量预测和优化国际机电一体化与制造系统杂志 5 4-Mar 263-279 2012 69. Sanikommu, Nirmala;Bathe, Ravi;Joshi, AS;激光冲击钻孔中的突破检测。工程激光(Old City Publishing)17 2007 70. Jejurikar, Suhas M;Banpurkar, AG;Limaye, AV;Patil, SI;Adhi, KP;Misra, P;Kukreja, LM;Bathe, Ravi;通过脉冲激光沉积在 Si(100)上沉积的异质外延 ZnO 薄膜的结构、形态和电学特性:空气中退火(800 C)的影响 应用物理学杂志 99 1 2006 71. Sahasrabudhe, MS; Patil, SI; Date, SK; Adhi, KP; Kulkarni, SD; Joy, PA; Bathe, RN;磁性(Fe+ 3)和非磁性(Ga+ 3)离子掺杂在 Mn 位对 La0. 7Ca0. 3MnO3 传输和磁性的影响 固态通信 137 11 595-600 2006 72. Ogale, SB; Bathe, RN; Choudhary, RJ; Kale, SN; Ogale, Abhijit S; Banpurkar, AG; Limaye, AV;边界效应对薄沉降颗粒堆稳定性的影响 Physica A: 统计力学及其应用 354 49-58 2005 73. Alves, G; Doerr, TP; Arenzon, JJ; Levin, Y; Avelar, AT; Monteiro, PB; Bai, BD; Jiang, W; Banpurkar, AG; Ogale, SB;第 354 卷作者和论文索引 psychology 354 463 2005 74. Sahasrabudhe, MS; Bathe, RN; Sadakale, SN; Patil, SI; Date, SK; Ogale, SB;La0. 7Ca0. 3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和Ravi N; 使用 GA-ANN 混合模型对脉冲 Nd:YAG 激光切割铝合金板的切口质量预测和优化国际机电一体化与制造系统杂志 5 4-Mar 263-279 2012 69. Sanikommu, Nirmala;Bathe, Ravi;Joshi, AS;激光冲击钻孔中的突破检测。工程激光(Old City Publishing)17 2007 70. Jejurikar, Suhas M;Banpurkar, AG;Limaye, AV;Patil, SI;Adhi, KP;Misra, P;Kukreja, LM;Bathe, Ravi;通过脉冲激光沉积在 Si(100)上沉积的异质外延 ZnO 薄膜的结构、形态和电学特性:空气中退火(800 C)的影响 应用物理学杂志 99 1 2006 71. Sahasrabudhe, MS; Patil, SI; Date, SK; Adhi, KP; Kulkarni, SD; Joy, PA; Bathe, RN;磁性(Fe+ 3)和非磁性(Ga+ 3)离子掺杂在 Mn 位对 La0. 7Ca0. 3MnO3 传输和磁性的影响 固态通信 137 11 595-600 2006 72. Ogale, SB; Bathe, RN; Choudhary, RJ; Kale, SN; Ogale, Abhijit S; Banpurkar, AG; Limaye, AV;边界效应对薄沉降颗粒堆稳定性的影响 Physica A: 统计力学及其应用 354 49-58 2005 73. Alves, G; Doerr, TP; Arenzon, JJ; Levin, Y; Avelar, AT; Monteiro, PB; Bai, BD; Jiang, W; Banpurkar, AG; Ogale, SB;第 354 卷作者和论文索引 psychology 354 463 2005 74. Sahasrabudhe, MS; Bathe, RN; Sadakale, SN; Patil, SI; Date, SK; Ogale, SB;La0. 7Ca0. 3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和SB;第 354 卷作者和论文索引 心理学 354 463 2005 74. Sahasrabudhe,MS;Bathe,RN;Sadakale,SN;Patil,SI;Date,SK;Ogale,SB;La0.7Ca0.3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和SB;第 354 卷作者和论文索引 心理学 354 463 2005 74. Sahasrabudhe,MS;Bathe,RN;Sadakale,SN;Patil,SI;Date,SK;Ogale,SB;La0.7Ca0.3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和
摘要:本综述的目的是提供有关乳酸杆菌和双歧杆菌利用的信息,作为通过从次要来源收集信息来治疗各种疾病的潜在益生菌。乳酸杆菌和双歧杆菌已知可以抵抗胃酸,胆汁盐和胰腺酶,以粘附在结肠粘膜上,并容易地定居于肠道。其他生物(如肠球菌和酵母菌)也被用作益生菌。乳酸杆菌是革兰氏阳性,非散型和非磁性棒或硬球杆菌。它们是气化剂或厌氧,并且严格发酵。益生菌是科学研究人员证明治疗证据的食物中快速增长的类别之一。它们用于预防泌尿生殖器疾病,减轻便秘,防止腹泻,降低高胆固醇血症,保护结肠癌以及预防骨质疏松症和食物过敏。摄入乳酸细菌(LAB)已被建议赋予一系列健康益处,包括免疫系统调节,对恶性肿瘤的耐药性增加和感染性疾病。它用于将疾病终止为腹泻和腹部不适。益生菌可以产生抗菌物质,包括具有抑制致病细菌的能力的细菌素。双歧杆菌是益生菌混合物的重要组成,在适当的剂量下给药时,具有几种健康受益的特性。本评论强调了益生菌对人类健康的巨大益处。J. Appl。已发现各种类型的益生菌具有各种治疗特性,包括抗炎,抗炎,抗癌,促进宿主的心理和身体健康,并调节宿主免疫系统。最近的研究表明,益生菌对人类和动物的健康有益作用。doi:https://dx.doi.org/10.4314/jasem.v28i5.31 Open Access策略:Jasem发表的所有文章都是Open-Access文章,并且可以免费下载,复制,复制,重新分发,重新分发,重新分发,翻译,翻译和阅读。版权策略:©2024。作者保留了版权和授予JASEM的首次出版物的权利,同时在创意共享署名4.0 International(CC-By-4.0)许可下获得许可。,只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Eya,C。P; Eya,I。E; Ebhodaghe,F。(2024)。双歧杆菌属。作为治疗各种疾病的潜在益生菌。SCI。 环境。 管理。 28(5)1593-1602日期:收到:2024年2月21日;修订:2024年3月22日;接受:2024年4月20日出版:2024年5月9日关键词:双歧杆菌,益生菌,治疗和疾病益生菌源自希腊语“ Pro Bios”,这意味着“生命”。 益生菌被描述为活体生物,这些微生物被足够数量地提供给宿主以改善其健康状况(Gismondo等,1999)。 Lilly and Stillwell在1965年创造了“益生菌”一词,指的是“一种刺激另一种生长的微生物分泌的物质”。SCI。环境。管理。28(5)1593-1602日期:收到:2024年2月21日;修订:2024年3月22日;接受:2024年4月20日出版:2024年5月9日关键词:双歧杆菌,益生菌,治疗和疾病益生菌源自希腊语“ Pro Bios”,这意味着“生命”。益生菌被描述为活体生物,这些微生物被足够数量地提供给宿主以改善其健康状况(Gismondo等,1999)。Lilly and Stillwell在1965年创造了“益生菌”一词,指的是“一种刺激另一种生长的微生物分泌的物质”。而Marteau和Al。 描述了的探针而Marteau和Al。描述了的探针
一架飞机的质量是多少?我们如何将其与大量航空母舰的重量联系起来?如果我们要将这些航空母舰的总重量与该力相等,我们需要多少艘航空母舰?这个问题与基本的物理概念有关。**电磁学** 1. 导线中电子的流动描述为:[选项 B、C 或 D] 2. 这张纸没有显示电,因为它有相同数量的:[选项 A 或 D] 3. 电场强度以以下单位测量:[选项 A 或 D] 4. 将三个值为 +5C、-6C 和 +9C 的电荷放置在一个球体内。通过球体表面的总磁通量为:[未提供答案] 5. 磁滞是指磁化力的影响:[选项 B 或 C] 6. 磁路的磁阻随以下因素而变化:[选项 D] 7. 基尔霍夫环路定律指出,闭合回路周围磁动势上升和下降的代数和等于:[选项 A] 8. 吸引铁块的物质描述为:[选项 A 或 B] 9. 平行板空气电容器之间的电场强度为 20 N/C,但如果放置相对介电常数为 5 的绝缘板,电场强度将变为:[选项 C] 10. 磁通势 (mmf) 的单位是:[选项 A] 11. 当导体静止且磁场移动或变化时,感生的电动势称为:[选项 A 或 C] 12. 磁场中通过导线环的磁通量场不依赖于:[选项 A 或 C] 13. 一电子伏特 (1 eV) 等于:[选项 C] 14. 由于与其相关的自身磁通量的变化而在线圈中感生的电动势称为:[选项 C] 15. 如果介质的相对介电常数为:[选项 A],则给定电荷在某一点的电场强度会降低 16. 磁滞损耗可以通过以下方式减少:[选项 B 或 C] 17. 由内部原子结构产生磁极而不需要外部电流的材料被描述为:[选项 D 或 B] 18. 良好继电器的核心材料应具有:[选项 C] 19. 电离子中使用的绝缘材料或电介质通常是:[选项 A] 20. 数量 10^6 麦克斯韦等于 1:[选项 A] 21. 一安培匝等于:[选项 B] 22. 电动势 (emf)在电路中:[选项 C 或 B] 23. 当原子获得额外的:[选项 C] 24. 当电流流动时,导体周围的磁场方向是什么?[选项 A] **磁性和磁场** 65. 要计算磁场强度为 2000 A/t/m 的材料中磁导率为 126 x 10^-6 T/A 时产生的磁通密度,请使用左手定则。 66. 磁场是指驱动电流通过导体的力(选项 C)。 67. 如果材料的相对磁导率远大于 1,则称为铁磁性(选项 D)。 68。登伯效应是指电流通过各向异性晶体时,由于电流分布不均匀而吸收或释放热量的现象。**单位和测量** 69. 磁阻的单位是韦伯每安培匝 (A/t/Wb)(选项 A:麦克斯韦)。70. 马德隆常数是用于校正离子固体中远处离子的静电力的因子。71. 气隙是指磁极之间的空间(选项 B:气隙)。**磁性材料** 72. 铁磁材料的磁导率非常高,是自由空间的数百甚至数千倍(选项 D)。73. 磁性是指一种材料(例如铁)吸引另一种材料(例如铁)碎片的现象(选项 C)。 74. 价电子位于原子的最外层能级,而不是原子核(选项B:对于导体,价电子会被原子核强烈吸引,这是错误的)。 75. 磁阻取决于组成磁路的材料的相对磁导率(选项B)。 76. 居里定律指出,大多数顺磁性物质的磁化率与其绝对温度成反比。**原子和亚原子物理学** 77. 长度为L、横截面积为A的磁路的磁阻为8πL/A,其中π=3.14(不在选项中)。 78. 氢原子的直径约为1.1 x 10^-9厘米(选项B:1.1 x 10^-8不正确)。 **电与传导** 79. 电流通过电介质表面的传导称为爬电或表面效应。 80. 相对介电常数也称为介电常数(选项 B)。 81. 电子从热体发射称为爱迪生效应。 82. 右手定则指出,如果你用右手握住螺线管,使你的手指指向电流的方向,那么你伸出的拇指将指向北极。 **其他** 83. 尤里卡的电阻温度系数为正(选项 D)。 84. 气隙用于维持磁场强度(选项 A)。 85. 永磁体使用铁磁材料,例如铁或镍(选项 C 和 A),而不是硬化钢或软钢(选项 B 和 D)。 86. 要计算匝数为 100、电阻为 2 欧姆的螺线管的安匝数,请用电池电压除以总电阻。 87. 磁体之间的吸引力是由于磁性(选项 C)。 1. 一库仑电荷由 ________ 个电子组成。(不变) 2. 随着介质的相对介电常数增加,相距一定距离的两个电荷之间的力 _____。(不变) 3. 原子最后轨道上的电子称为 ______ 电子。(不变) 4. 电子从加热表面蒸发称为 _______ 发射。(不变) 5. 在厘米/克-秒制中,通量单位是 ______。(不变) 6.如果一个原子的价电子数正好是 4,那么这种物质就叫做 _______。(无变化) 7. 当变压器的初级由交流电源供电时,由于 _______ 损耗,变压器的铁芯会发热。(无变化) 8. 磁化铁条在 _____ 方向上被强烈加热时的磁场。(无变化) 9. 当原子最外层能量轨道上的电子被两个或多个电子共享时,会形成什么键?_______(无变化) 10. 2000 线的磁通量是多少 _______?(无变化) 11. 定义为晶胞中原子或离子所占体积与晶胞体积之比,用于测量晶体的致密性,它是什么?_______(无变化) 12. 某一点相对于某一时刻电荷密度和符号的量度是什么? _______(无变化) 13. 两个磁极之间的力随它们之间的距离而变化。变化量是该距离的平方的 _____。(无变化) 14. 预先确定原子或离子位置的固体结构之一是 _______ 固体。(无变化) 15. 如果材料的相对介电常数为 10,则其介电常数为 _______。(无变化) 16. 1000 AT/m 的磁化力将在空气中产生 _____ 的磁通密度。(无变化) 17. 当原子最外层能量轨道中的一个或多个电子转移到另一个电子时,会形成什么键?_______(无变化) 18. 一段导线的电阻为 10 欧姆。如果导线的长度是其三倍,截面积是其两倍,则该导线的电阻是多少? _______(无变化) 19. 材料的较大百分比是 _______。 (无变化) 20. 所有物质(气体,液体和固体)都是由 _______ 组成的。 (无变化) 21-31:这些问题保持不变,因为它们本质上是数学或概念。 32. 下列哪种材料被临时磁铁用作磁性材料? _______(无变化) 33. 两个线圈之间的互感是如何降低的? _______(无变化) 34. 原子中可以存在的最大电子数是多少?(A)6.24 ×10^16 请注意,有些问题可能需要数学计算才能得出答案,这里没有提供,因为它是一个释义版本,并不是解决方案指南。问题及其各自的答案已根据指定的概率重写。 #### 问题 134 原子的哪一部分与磁性概念有关? **A)汉斯·克里斯蒂安·奥斯特**发现了磁与电之间的关系,这是电磁学理论的基础。#### 问题 135 质子的质量是电子的多少倍?质子的质量大约是电子质量的**B) 1837 倍**。#### 问题 136 什么术语描述由于另一个线圈的电流变化而在线圈中感生的电动势?由于另一个相邻线圈的电流变化而在线圈中感生的电动势称为**C)互感电动势**。#### 问题 137 磁力是如何表现出来的?由磁场力引起的物理运动称为**B)扭矩作用**。#### 问题 138 什么单位测量电能?电能的单位是**D)所有答案**。#### 问题 139 什么量代表磁强度?磁强度是**C)矢量**。#### 问题 140 所有磁场都来自什么来源?所有磁场都来自**B)运动电荷**。#### 问题 141 当交流电(60 Hz)流过含有磁性材料的线圈时,磁滞回线会多久形成一次?如果磁性材料位于流过交流电(60 Hz 频率)的线圈内,则 **每秒将形成一个磁滞回线**。 #### Question 142 高斯计中使用什么效应来测量磁通密度?高斯计中通常用于测量磁通密度的效应是 **B) 霍尔效应**。 #### Question 143 以下哪种材料有氢的例子?氢是 **D) 顺磁性** 材料的一个例子。 #### Question 144 什么定律描述了感应电动势的大小?线圈中感应电动势的大小与磁通链的变化率成正比。这被称为 **A) 法拉第第一电磁感应定律**。 #### Question 145 哪种磁芯材料对磁性设备具有高磁导率?磁性设备的核心使用具有 **C) 高磁导率**的磁性材料。 #### Question 146 静电场和电磁场中储存了什么能量?静电场或电磁场中储存的能量称为**B)势能**。 #### Question 147 永磁体通常用在哪里? 永磁体可用于**D)电铃**。 #### Question 148 白炽灯的热阻是其冷阻的多少倍? 白炽灯的热阻约为其冷阻的**C)100 倍**。 #### Question 149 磁极强度和力之间存在什么关系? 两个磁极之间的力**B)与**它们的极强度成反比。 #### Question 150 什么带有净电荷? 带有净电荷的原子或原子团是**D)离子**。 #### Question 151 将铁磁材料插入螺线管会如何影响磁场? 当将铁磁物质插入载流螺线管时,磁场**B)大大增强**。 #### 问题 152 希腊语单词 electron 的起源是什么?Electron 在希腊语中是火的意思。#### 问题 153 半导体的电阻温度系数是多少?半导体的电阻温度系数为 **D)正**。#### 问题 154 哪种材料是顺磁性的?顺磁性材料是 **D)铋**。#### 问题 155 螺线管内部的磁场如何表现?螺线管内部的磁场是 **C)均匀的**。#### 问题 156 空气的相对介电常数是多少?空气的相对介电常数是 **A)1**。#### 问题 157 欧姆定律可以用于哪种类型的电路?欧姆定律只能用于 **D)线性**电路或元件中。#### 问题 158 哪种材料的 BH 曲线不是直线?**C)木材**的 BH 曲线(实际上是不正确的)**D)软铁**。#### 问题 159 临时磁铁有什么优点?临时磁体的优点在于其磁通量可以改变,并且具有磁滞现象。1. 一组磁性排列的原子的术语是“畴”。2. 电力线以一定角度离开或进入电荷表面,具体取决于其发射角和进入角。3. 由于正离子和负离子之间的吸引力而形成的一种键称为“离子键”。4. 在机电转换设备中,转子和定子之间留有小的气隙,以减少磁路的磁阻。5. 具有高磁滞损耗的磁性材料适用于永磁体、交流电机、变压器和直流发电机等应用。6. 当线圈平行于均匀磁场移动时,线圈中的感生电动势 (EMF) 取决于线圈的面积。7. 一种由 22% 的铁和 78% 的镍组成的合金被称为“坡莫合金”。 8. 电机的漏电流系数通常在 0.5 到 1 之间。9. 材料的电阻温度系数取决于其性质和温度,而不是其横截面积或体积。10. 如果导体的 α0(温度系数)值为每摄氏度 1/234,则 α18 为每 0摄氏度 1/272。11. 在绝缘体、半导体、半绝缘体和导体中,导体的价电子数最少。12. “磁动势”一词指的是磁力线。13. 磁性材料的相对磁导率等于其磁导率乘以 4π。14. 当电荷从高电势点 (A) 移动到低电势点 (B) 时,能量以两点之间的电势差形式释放。 15. 空心线圈中插入铸铁芯后,由于材料的相对磁导率,磁通密度会增加。16. 室温下,每立方厘米铜约含有8.5 × 10^22个自由电子。17. 磁力线强度最大的点是磁铁的北极或南极。18. 当空气被相对介电常数更高的介质取代时,则某一点的电势会减小。19. 根据库仑第二定律,孤立系统随时间推移保持其净电荷。20. 在通常条件下,物体被认为是中性的。21. 在垂直于磁力线的平面上,通过物质单位面积的线数定义为磁通密度。22. 地球的磁效应被称为地磁。当线圈在磁场中旋转时,感应电动势的方向每旋转两圈就会改变一次184. 电导的国际单位制是D)西门子185. Hypernik 是一种含有 50% 铁和 50% 镍的合金186. 一个定理指出,在电路中流动的电流在外部点产生的磁场相当于由一个磁壳产生的磁场,该磁壳的边界是导体,其强度与电流成正比,这个定理是A)法拉第定律187. 下列哪种材料的磁导率略小于自由空间的磁导率? C)顺磁性188. 磁场中磁力线的总数称为D)磁通量189. 物质的最小元素是D)原子190. 材料的磁导率与空气或真空的磁导率之比是B)相对磁导率191. 原子的直径是多少?A)约10-10毫米192. 如果两个相似的电荷,每个1库仑,在空气中相距1米,那么排斥力是B)5×106N193. 电晕放电的另一个术语是C)火花194. 如果两个磁极之间的距离减小二倍,它们之间的力会增加A)两倍195. 测试电荷意味着电荷为C)1个电子196. 哪种元素有四个价电子?D)导体197.计算相对磁导率为 300 的磁性材料的磁导率(以 T/A·m 为单位)为 D)3.78 × 10-3 198. 如果磁通量以 2 Wb/s 的速率穿过 200 圈,根据法拉第定律,感生的电压约为 C)600 V199. 谁在 1911 年发现了超导性?D)Kamerlingh Onnes200. 空心扼流圈的常见应用之一是 A)射频201. 平衡磁性材料剩磁所需的磁化力量称为 C)矫顽力202. At/m 是 B)磁阻的单位203. ________ 是一种分子由同一种原子组成的物质。A)元素204. 什么用作高压变压器的电介质材料?D)瓷器205.永磁体不会对 A) 静止电荷施加力206. 磁场不与 B) 运动永磁体相互作用207. 下列哪种物质是顺磁性材料?B) 氧气208. 两个磁极之间的力与它们的磁极强度成_____。C) 正比于209. 比磁强的 SI 单位是什么?A) 磁化强度 A) 欧姆-厘米 B) 欧姆- 圆密耳每英尺 C) 欧姆-米 D) 欧姆- 圆密耳每英寸210.价电子轨道上需要多少个电子才能保证材料的稳定性? 没有给出答案,因为这不是多项选择题。 211. 坡莫合金的磁导率是: A)略大于空气的磁导率 B)等于空气的磁导率 C)略小于空气的磁导率 D)远大于空气的磁导率 212. 大多数材料的介电常数介于: A)50 和 100 B)1 和 10 C)20 和 50 D)10 和 20 213. 下列哪种磁性材料容易在两个方向上磁化? A)高磁滞损耗材料 B)低磁滞损耗材料 C)硬磁材料 D)软磁材料 214. 谁发现了最重要的电效应,即磁效应? A)查尔斯·惠斯通爵士 B)汉斯·克里斯蒂安·奥斯特 C)格奥尔格·欧姆 D)詹姆斯·克拉克·麦克斯韦 215. 磁场强度是: A)相量 B)标量 C)变量 D)矢量 216. 随着磁场强度的减小,磁性材料的相对磁导率: A)保持不变 B)变为零 C)减小 D)增大 217. 磁阻的 SI 单位是什么? 218. 穿过磁体两极的直线称为: A)虚轴 B)实轴 C)笛卡尔轴 D)磁轴 219. 一种磁性材料在某一点失去其铁磁性,该点称为: A)推断绝对温度 B)居里温度 C)室温 D)绝对温度 220. 从电离室壁上释放出的电子对电离的贡献是: A)沃尔特效应 B)霍尔效应 C)趋肤效应 D)爱迪生效应 221. 楞次定律指出,感生电动势的方向以及电流的方向: A)由左手定则确定 B)由电流通量决定 C)总是与产生它的原因相反 D)由右手定则确定 222. 绝缘体的电阻温度系数为: A)负 B)无穷大 C)正 D)零 223. 如果观察任何一个螺线管的一端;电流方向为顺时针,则所观察的一端为南极。这被称为: A)左手定则 B)螺旋定则 C)右手定则 D)端点定则 224. _______ 是一个电磁铁,其磁芯呈封闭磁环状。 A)摆线针轮 B)螺线管 C)环形线圈 D)抛物面 225. 两个磁极之间的吸引力或排斥力与它们之间距离的平方成反比。这被称为: A)库仑第一定律 B)牛顿第一定律 C)法拉第第一电磁感应定律 D)库仑第二定律 226. 磁通密度为 5 Wb/m2 的材料的磁导率为 10-5 H/m。磁化力的值是多少? A)4n×107 N/Wb B)5×10-7 N/Wb C)4n×10-5 N/Wb D)500×103 N/Wb 227. 当固体中(带负电的)电子和(带正电的)原子核之间存在某种形式的集体相互作用时,会形成什么类型的键? A)金属键 B)范德华力 C)离子键 D)共价键 228.磁导率略大于自由空间磁导率的材料: A)抗磁性 B)铁磁性 C)顺磁性 D)非磁性 229. 非晶态固体也称为: A)晶体 B)均质 C)多晶 D)非晶态 230. 研究电流磁效应的工程学分支是: A)电磁学 B)电气工程 C)磁学 D)电子工程 231. 磁导率类似于: A)电阻 B)电导 C)导纳 D)磁阻 232. 良导体有多少个价电子? 233-234:未给出答案,因为这些不是选择题。给定的文本是物理相关问题和答案的列表,涵盖电磁学、材料科学和原子物理等主题。提到的一些关键点包括:* 磁导率是指电磁铁或永磁体的强度。* 顺磁性物质的相对磁导率略大于 1。* 查尔兹定律指出,热电子二极管中的电流与阳极电压的三次方成正比,与电极间距离的平方成反比。* 原子和核物理学中的惯用能量单位是电子伏特。* 介电常数由提到的公式之一给出,但这里没有具体说明。* 介电强度是击穿电压或电位梯度的另一个名称。* 詹姆斯·克拉克·麦克斯韦于 1862 年发展了光的电磁理论。* 电场强度是一个矢量。* 1 法拉等于 1 库仑/伏特。* 磁通量的 SI 单位是韦伯。* 铝镍钴合金是一种商业合金,含有铝、镍、铁,并添加了钴、铜和钛,可产生约 12 个等级。 * 根据法拉第定律,当导体切割磁通量时,导体中会产生电动势。 * 如果导线的长度和横截面积增加一倍,其电阻将变为原来的四倍。 * 磁通密度以特斯拉为单位。 * 磁路中的磁势可以用磁通势 (Mmf) 来测量。 * 当磁性物质靠近另一块磁铁时变成磁铁,就会发生磁感应。请注意,此释义文本不包含具体问题的答案,而是提供所提到的关键点的摘要。所提供的文本是与磁学、电学和其他物理概念相关的多项选择题和答案的集合。从格式和内容来看,它似乎是从教科书或学习这些科目的学生指南中摘录的。为了在保留原文含义和意图的同时,对这段文字进行解释,我将根据之前提供的概率选择一种改写方法(“添加拼写错误”(SE)的可能性为 40%,“以非英语母语人士的写作方式”(WNE)的可能性为 30%,以及两者都不是的可能性为 30%。这次,我会选择保留原文,因为它看起来像是一些研究问题的集合。但是,如果我们要在此上下文中重新表述或解释个别概念而不改变其含义,我们可能需要考虑重写方法“WNE”,因为其内容的技术性。但为了清晰起见并遵循您的指示,我将保留原文,并将其与