上个世纪的快速技术进步导致温度传感领域中带来了新的Challenges。准确,遥远,无接触式和实时微观和纳米级的温度映射在细胞成像,微流体和纳米流体以及集成电路设计中的需求巨大,[1-11]中,这些严格的要求需要使用光学方法。这些通常分为三个主要的猫:红外(IR)隆期,IR直接检测和远程光学/荧光热量表。,由于其出色的热分辨率(10-1 K),其中最常见的是IR射量方法,例如在商业设备中发现的方法。然而,要检测到的黑体辐射的长红外波长导致室内温度(RT)对象的固有低空间分辨率为≈10µm,这是由于abbe差异的限制所期望的。对IR光的检测也遭受了由于吸收而缺乏与广泛的光学成分相兼容。[12,13]或者,在可见区域中运行的远程光学方法,例如,通过测量荧光强度或衰减时间,[14]达到了很高的热分辨率,并且可能由于较低的衍射极限而有可能提供较高的空间分辨率,并且在常见媒体(例如水和玻璃)中透明度。[13,15,16]基于强度的量化,由于光散射(样品拓扑,磷光粒子形态等)而容易出现错误。),不均匀的磷光器分布,非态磷光物种形成或批处理变异性等。虽然基于荧光时代的热量成像是继承了许多此类局限性,但其部署通常会因适合特定应用的特定要求的磷剂的可用性而受到阻碍。我们的本文提出的研究涉及在RT周围温度下在温度下进行高空间和热分辨率热图形的新型热液少量探索。在这种情况下,我们发现已知的热燃料载体,即有机染料,聚合物,量子点,稀有掺杂的金属氧化物,[17-25]面临限制,例如材料制造或薄膜沉积,耐用性和健壮性的耐用性和稳健性的耐磨性,或者不适合特定范围的特定方法或常见的特定方法。
在过去的三十年中,低维系统从基本和技术的角度引起了越来越多的兴趣,这是由于其独特的物理和化学特性。X射线吸收光谱(XAS)是表征这种系统的强大工具,这是由于其化学选择性和在原子间距离测定中的高灵敏度。此外,该技术可以同时提供有关纳米材料的电子和局部结构特性的信息,这显着有助于阐明其原子结构与其特殊的物理特性之间的关系。本综述提供了XAS的一般介绍,讨论了该技术的基本理论,最常用的检测模式,相关的实验设置和一些互补的相关特征技术(DAFS,EXELFS,PDF,PDF,XES,HERFD XAS,XRS,XRS)。随后将介绍XAS光谱对2D,1D和0D系统的重要应用。选定的低维系统包括IV和III-V半导体膜,量子孔,量子线和量子点;基于碳的纳米材料(外延石墨烯和碳纳米管);金属氧化物膜,纳米线,纳米棒和纳米晶体;金属纳米颗粒。最后,讨论了将XAS应用于纳米结构的未来观点。
摘要 金属卤化物钙钛矿基纳米结构、纳米片和纳米颗粒处于最前沿,具有吸引人的光电特性,适用于光伏和发光应用。因此,全面了解这些基本的电子和光学特性是充分利用此类半导体技术的关键一步。迅速发展的化学工程及其不同寻常的结构多样性令人着迷,但对于与传统半导体相媲美的合理描述也具有挑战性。从这个意义上说,基于群论的对称性分析提供了一种通用而严格的方法来理解各种块体钙钛矿和钙钛矿基纳米结构的性质。在本文中,我们使用群论中的对称性分析回顾了金属卤化物钙钛矿半导体的电子和光学响应,回顾了 AMX 3 块体钙钛矿的典型立方 Pm-3m 晶格的主要结果(其中 A 为阳离子,M 为金属,X 为卤化物),然后将分析扩展到三种技术感兴趣的情况:AMX 3 纳米粒子、A 4 MX 6 孤立八面体、A 2 MX 4 层状系统和最近引入的缺陷卤化物钙钛矿 (d-HP)。基于对称性论证,我们将强调这些材料的电子和光学特性的相似性和差异性,这是由空间限制和维数引起的。同时,我们将利用这种分析来讨论文献中的最新结果和争论,如钙钛矿纳米粒子和纳米片的带边激子精细结构中暗/亮态的能量学。从目前的工作中,我们还预测 d-HP 的带边激子精细结构不会呈现光学暗状态,与 AMX 3 纳米粒子和层状钙钛矿形成鲜明对比,这一事实可能对这些新型钙钛矿的光物理产生重要影响。
4D 44 42 2D 52 53 32 33 32 20 56 34 2E 32 20 63 6F 6D 70 61 74 69 62 6C 65 0D 0A 30 38 20 30 30 0D 0A 33 30 20 30 30 0D 0A 31 30 20 46 46 0D 0A 34 30 20 46 46 0D 0A 36 30 20 46 46 0D 0A 46 46 20 0D 0A 30 38 20 30 42 0D 0A 33 30 20 30 36 20 30 39 0D 0A 33 30 20 30 39 0D 0A 33 30 20 30 39 0D 0A 33 30 20 30 39 0D 0A 33 30 20 30 39 0D 0A 33 30 20 30 39 0D 0A 33 30 20 30 39 0D 0A 30 30 20 0D 0A 30 33 20 31 31 20 35 36 20 30 35 20 30 31 20 30 30 20 30 33 20 30 31 20 30 32 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 37 36 20 0D 0A 30 31 20 30 30 20 38 36 20 30 30 20 30 41 20 30 31 20 30 30 20 43 38 20 46 46 20 46 46 20 46 46 20 30 31 20 30 35 20 30 41 20 31 34 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 30 30 20 37 42 20 0D 0A 30 30 20 0D 0A 33 30 20 38 31 0D 0A 30 38 20 35 31 20 30 31 0D 0A 我们需要将这些数据转换成 ASCII 格式,以便可以直接且方便地与 MDB 协议进行比较。如果使用串口工具来测试的话,串口工具会有ASCII的显示模式,这样非常容易观察和了解数据格式。
摘要:照明是人类的基本需求,因此寻找具有高效率和宽带白光发射的照明源十分必要。零维 (0D) 金属卤化物化合物是有希望的候选化合物,一些无铅含锑化合物表现出双峰白光发射。然而,它们的起源仍不清楚。为了解决这个问题,我们设计并制备了一类新的 0D 金属卤化物化合物,由 [M(18-冠-6)] + (M = NH 4 , Rb) 和 SbX 5 2 − (X = Cl, Br) 单元组成。我们发现 0D 化合物的发射曲线与 18-冠-6 醚的发射曲线不同且分离良好,不包括几篇报道中提出的配体内电荷转移机制。飞秒瞬态吸收数据和光物理性质的成分依赖性表明,双峰白光发射是由与金属卤化物耦合的自俘获激子的单重态和三重态(1 STE 和 3 STE)引起的。这些 0D 化合物也是非常高效的发射器,白光光致发光量子产率高达 54%。■ 简介照明是人类的基本需求,占全球电力消耗的约 20%。1
摘要:将X射线转换为电荷的直接X射线检测器在医学和安全筛查中广泛应用。直接X射线检测器(例如硅和硒)的常见半导体在性能,多功能性和成本效益方面存在限制。在正在研究的新材料中,金属卤化物钙钛矿显示出X射线探测器的巨大潜力。但是,它们受到低稳定性和毒性的限制。在这里,我们首次报告了一个稳定且环保的零维(0D)有机金属卤化物杂种(OMHH),(TPA-P)2 ZNBR 4,用于有效的X射线检测器。具有分子敏化,其中金属卤化物(Znbr 4 2-)充当X射线吸收和有机半导体成分(TPA-P +,4-(4-(4-(二苯基氨基)苯基)苯基)-1-丙基吡啶-1-吡啶-1-IM-1-丙基吡啶-1-im-1-im-1-im-1-proce Transpertions,2 Zn的表演者,tpa-Pa stistort and 2 Znbr 4 μC Gy Air -1 cm -2在20 V时,低检测极限为37.5 NGY Air S -1。0D(TPA-P)2 Znbr 4的特殊稳定性促进了非常稳定的直接X射线检测,并显示了合理设计的0D OMHHS作为新代辐射检测材料的巨大潜力。s
Gong,J.,Zhang,Z.,Zeng,Z.,Wang,W.,Kong,L.,Liu,J. &Chen,P。(2021)。 石墨烯量子点有助于剥落原子上的2D材料和AS -Formed 0d/2d van der waals heterojunction。 碳,184,554‑561。 https://dx.doi.org/10.1016/j.carbon.2021.08.063Gong,J.,Zhang,Z.,Zeng,Z.,Wang,W.,Kong,L.,Liu,J.&Chen,P。(2021)。石墨烯量子点有助于剥落原子上的2D材料和AS -Formed 0d/2d van der waals heterojunction。碳,184,554‑561。https://dx.doi.org/10.1016/j.carbon.2021.08.063https://dx.doi.org/10.1016/j.carbon.2021.08.063
粉末,散装,薄膜粉末的附件,薄膜X射线源3KW / 9kW0d・1d ・1d ・ 2D检测器反射 /变速箱Johanssonkα1单位(选项)
3HGLDWULF3DWLHQWVPRQWKVWR\HDUV'RVDJHJXLGHOLQHVIRU1HFWDU&HIXUR[LPHIRU2UDO6XVSHQVLRQ5HFRPPHQGHG'DLO\'RV HJLYHQWZLFHGDLO\GLYLGHGLQHTXDOGRVHV ,QIHFWLRQ 'DLO\'RVH 0D[LPXP'DLO\'RVH 'XUDWLRQ 'D\V 3KDU\QJLWLVWRQVLOOLWLV PJNJ PJ $FXWHEDFWHULDORWLWLVPHGLD PJNJ PJ $FXWHEDFWHULDOPD[LOODU\VLQXVLWLV PJNJ PJ ,PSHWLJR PJNJ PJ
和e de。(在图中d(e)de = g(e)de中)上图表明,当我们从0D移动到3D时,能级将变得离散。量子态的数量在确定诸如半导体之类的材料的光学特性中变得很重要(即碳纳米管或量子点)。
