摘要:二维(2D)半导体最近由于其独特的光学和电子特性而引起了光传递的极大兴趣。然而,对于单层光晶体管,可检测到的光谱范围和光吸收效率通常非常有限。在这里,我们演示了基于零差(0D)硅量子点(SIQDS)和二硫化钼(MOS 2)形成的范德华异质结构(VDWH)(VDWH)(VDWH)(VDWH),尤其是在Ultraviolet(UV)的光谱范围内,该光谱(MOS 2)表现出很高的检测和响应率。与单独基于单层MOS 2的光晶体管相比,SIQD/MONOLAYER MOS 2 VDWH光晶体管的探测率提高了100倍(从1.0×10 12到1.0×10 12到1.0×10 14 cm×Hz 1/2/w),响应率提高了89倍,响应率提高了66.7秒66.7至66.7 s/f。对于SIQD/几层MOS 2 VDWH,还观察到增强的检测和响应性。分析和对照实验表明,跨SIQD/MOS 2 VDWH的电荷转移导致光子效应和光量。高性能SIQD/MOS 2 VDWH光晶体管对超敏化光检测,基于紫外线的光学通信,神经形态视觉传感和发射速度计算应用具有巨大的希望。关键字:0d/2d van der waals异质结构,Si Quantum Dot,MOS 2,光晶体管,高检测性,高响应率■简介
抽象的。 ,q wklv uhvhdufk lqwurgxfhv d phwkrg wr frqwuro vwudwhj \ ri d vrodu skrwryrowdlf 39 v \ vwhp frqqqhf frqqhffww w w w w w w w w w wkh julg)ru 0d ru 0d [lpxp 3rlqlqlq whr friq whnj v v v y y y y y y y y y y y y y y y y y y y y y y y y. UWHU 96&LV XVHG LQ WKLV V \ VWHP /RDG DW 3 && UHFHLYHV WKH $&SRZHU IURP'&SRZHU REWDLQHG IURP 39 DUUD hydoxdwh xqlw whpsodwhv dqg dq $ uwlilfldo 1hxudo 1hwzrun $ 11 frqwuroohu lvprxwhf u7gwhv u7gwhv wruwlrq 7+ q julg fxuuhqw glvwruwlrqv irxqg wr eh ohvqdohg dohg lwqldowl y ilowhu edvhg frqwuro dojrulwkp lv lv hpsor \ hpsor \ hg rshudwlrq $ v \ qfkurql] frdwwqwqwqhvqh fwlrq wr wkh wkh julg zkhq zkhq dqg glvfrqq qhfwlrq zkhq zkhq zkhq xqdydlodeoh([shulphqwv zhu frq zhuh frqggxfwhoo fdvlwqlwql wzrun $ 11 lv xvhg dv h [whqvlyh phwkrg zklfk jlyh ehwwhu shuirupdqfh dqg wrwdo kduprqlf glvwruwlrq
CIMdata 对 S&A 部分的描述如下:模拟与分析包括各种 0D/1D/2D/3D 技术,例如结构和疲劳分析、热分析、动力学、声学、多体模拟、计算流体动力学、材料特性、系统建模和仿真、设计优化/DoE/稳健设计、模拟结果可视化、经验数据分析、基于数学的一般计算、模拟过程和数据管理以及其他旨在使工程师能够通过数字建模和模拟来模拟现实世界的功能行为以执行“假设”场景、探索和评估替代设计和技术概念,并在新产品开发过程中深入了解系统行为;对“竣工”进行最终性能验证
CIMdata 对 S&A 部分的描述如下:模拟与分析包括各种 0D/1D/2D/3D 技术,例如结构和疲劳分析、热分析、动力学、声学、多体模拟、计算流体动力学、材料特性、系统建模和仿真、设计优化/DoE/稳健设计、模拟结果可视化、经验数据分析、基于数学的一般计算、模拟过程和数据管理以及其他旨在使工程师能够通过数字建模和模拟来模拟现实世界的功能行为以执行“假设”场景、探索和评估替代设计和技术概念,并在新产品开发过程中深入了解系统行为;对“竣工”进行最终性能验证
,qwhuqdo 0hpru \ *%%xlow lq:l)l 7hpshudwxuh 6hqvru%uljkwqhvv 6hqvru([whuqdo 6HQVRU /RFDO .H \ 2shudwlrq(pehgghg&06 86%3OD \ 3od \ /rfdo 1r 6ljqdo,pdjh&xvwlrq] dlo ryhu&rqwhqw 6 \ qf 56& /rfdo 1hwzrun 6FUHQ 6KDUH 3OD \ YLD 85/ 6FUHQ 5RWDWLRQ([WHUQDO,QSXW 5RWDWLQ 3.3 3%3%3 7loh 6Hwlq 0d [ 6hwlqj'dorqlqj 6103&rqwuro 0dqdjhu 30 0rgh 6pduw(qhuj \ 6dylqJ:dnh rq /$$ 1&uhvwurq,qpfr&psdsdssssssssssssssdddwlelw \%frq +'0,&(6,6,6,6HWWWlQJ ZHE57&< /div>&< /div>&< /div>&< /div>&< /div>&< /div>&< /div>&< /div>
ƒ 磁化测量技术已经非常成熟,并且对于材料和器件特性分析仍然至关重要;ƒ 磁显微镜和时间分辨磁测量将继续快速发展;ƒ 将空间和时间分辨率与磁灵敏度相结合是未来的挑战。近年来,NPL 已成为纳米磁学的重要研究中心。NPL 关于纳米制造 0D 磁阵列和纳米线的维度效应的研究已发表在十几篇文章中,并在主要国际会议上发表。特别是,最近的结果表明 GeMn 纳米线具有室温铁磁性,受到了研究界和工业界的热烈欢迎。根据本报告,我们建议未来的 NPL 工作将涉及以下活动:
