1.简介 纳米磁性涉及研究磁有序材料在至少一个维度上受到几何限制时的行为。除了二维薄膜外,还可以考虑诸如一维纳米线或零维磁岛之类的物体。天然存在的纳米磁体相对罕见。纳米磁体的一些例子是磁铁矿 (Fe 3 O 4 ) 颗粒,它们沉淀在静磁细菌、软体动物、昆虫、鸟类和鱼类的不同器官中。人们认为这些粒子可作为迁移的场传感器。磁铁矿和其他氧化物细颗粒也是岩石磁性的原因,在陨石中也有遇到。然而,由于稀释和不完全饱和,天然纳米颗粒中的磁性逐渐减小。磁性材料的进一步改进在很大程度上依赖于纳米结构和自旋工程。由于新型高分辨率制造技术的不断发展,从相对较大的微米颗粒到单个原子链的各种物体都可以相当容易地生产出来。另一方面,“超材料”方法代表了材料设计策略,可以生产自然界中不存在的材料。
等离子体增强光催化已成为一种很有前途的太阳能-化学能转换技术。与孤立或无序的金属纳米结构相比,通过控制单个纳米组件的形态、成分、尺寸、间距和分散性,具有耦合结构的等离子体纳米结构阵列可产生强大的宽带光收集能力、高效的电荷转移、增强的局部电磁场和大的接触界面。尽管金属纳米结构阵列已在各种应用方面得到广泛研究,例如折射率传感、表面增强光谱、等离子体增强发光、等离子体纳米激光和完美光吸收,但表面等离子体共振 (SPR) 与增强光催化之间的联系仍然相对未被探索。在本研究中,我们概述了从零维 (0D) 到三维 (3D) 的等离子体纳米结构阵列,以实现高效的光催化。通过回顾等离子体纳米结构阵列在太阳能驱动化学转换中的基本机制、最新应用和最新发展,本研究报告了等离子体纳米结构集成用于等离子体、光子学、光电检测和太阳能收集领域的功能设备的最新指导。
传感器。通常,气体传感器有一些基本标准和性能参数:(a)高灵敏度; (b)高选择性; (c)性能的稳定性; (d)快速响应; (e)工作温度低和(f)低功耗。召开半导体气体传感技术被广泛研究和使用。6 - 8但是,由金属氧化物组成的这种气体传感器需要高温才能运行,其中一些在高于150°C的温度下工作,以增强气体使用感应材料的化学反应性。因此,能源消耗增加,因此在日常环境条件下降低了其适用性。室温(RT)传感器的操作不需要热量,因为它们不需要热量。最近,随着低维半导体的进展,2D材料吸引了很多考虑。通过使用2D材料,可以开发出更灵敏度的低功率和高密度气体传感器。2D材料的较大表面 - 体积比使其具有高度的效率和更大的恢复效率。9,10它们具有良好的连接和半导体特征。表面修饰也可以在这些材料上由于弱范德华力而进行,这使得与0D和1D材料相比,这使得2D材料更合适。2D材料可以归类为:(a)石墨烯家族; 11(b)2D金属氧化物; 12
Altair Inspire™ - 用于使用3D CAD几何形状的3D模拟驱动设计和工程 - 以模拟机器人是否会通过结构分析,拓扑优化 /生成设计和运动动力学在功能上执行功能。AltairRapidMiner® - 用于代码选项数据科学和AI/ML - 特别有助于快速处理,可视化和分析First®团队侦察数据以选择最佳联盟合作伙伴。altaircompose® - 用于极为易于使用的方程式(即0D)工程建模和模拟 - 例如“类固醇计算器”。作为面向工程的补充或Excel,Python,Java和/或C ++的替代方案。Altair Twin Activate™ - 用于开放的多学科系统模拟,尤其是电气/电力机械设备,例如机器人。使用3D建模工具轻松集成的有用基于块数(1D)建模。学生版捆绑包 - 除了上面列出的产品外,还可以访问许多Altair软件产品,例如用于建模和模拟电源电子设备和电池和电动机系统之间的电源转换,涉及直流电(DC)(DC)(AC)(AC),例如第一个机器人。也可以帮助进行电源管理。访问Altair的专用页面,以支持第一机器人团队(Altair.com/first-robotics)。
6RXUFHV LQGLFDWH WKH $*&¶V WHUULWRULDO FRQWURO SUHGRPLQDQWO\ DQG WUDGLWLRQDOO\ LQ WKH QRUWK QRUWKZHVW RI &RORPELD KDV H[SDQGHG WR3D FPDWDH FPDWDH D3D QG (FXDGRU ERUGHUV 'XULQJ DUPHG VWULNHV KHOG E\ WKH $*& LQ 0D\ WKH JURXS UHSRUWHGO\ FRQWUROOHG PXQLFLSDOLWLHV DFURVV GHSDUWPHQWV ,W DOPSWWHVHWHWHVWH NH RYHU WHUULWRU\ FORVH WR WKH 9HQH]XHODQ ERUGHU DQ DUHD LQFUHDVLQJO\ GRPLQDWHG E\ WKH (/1 ,Q LWV RZQ 0DUFK GLVSOD\ RI FRQWURO WKWH1 DXFQLWKHQLWKH OLWLHV LQ GHSDUWPHQWV WKRXJK LPSDFWLQJ LQ WKH QRUWKZHVW VRXWKZHVW DQG HDVW 7KH (/1 LV DOVR H[WHQGLQJ LQWR UHPRWH VRXWKHUQ GHSDUKWWQVHVHVHVHWHWH SUHVHQW SDUWLFXODUO\ DORQJ WKH (FXDGRU 3HUX DQG $PD]RQLDQ %UD]LO ERUGHUV 3UHVHQW LQ RYHU PXQLFLSDOLWLHV LQ )$5& GLVVLGHQWV DUH DOQRWQHQHWKHWKHWKH] H HDVW DQG WKH 3DFLILF FRDVW LQ WKH ZHVW ZKLOH FULPLQDO JURXSV VLPLODUO\ RSHUDWH LQ LQWHUQDWLRQDO ERUGHU FRDVWDO UHJLRQV EXW DOVR LQ XUEDQ FHQWHVXRJLQJLGWH OL DQG %XHQDYHQWXUD VHH 2YHUYLHZ 1XPEHUV DQG WHUULWRULDO SUHVHQFH $UPHG JURXSV DQG &ULPLQDO JDQJV
摘要 金属卤化物钙钛矿是一类因具有优异的光电性能而成为光电探测器和太阳能电池的理想材料。它们的低成本和低温合成特性使其在旨在彻底改变半导体工业的广泛研究中具有吸引力。金属卤化物钙钛矿的丰富化学性质使其可以通过成分工程轻松调整所需的光电性能。此外,使用不同的实验合成和沉积技术,如溶液处理、化学气相沉积和热注入方法,钙钛矿的维度可以从 3D 改变为 0D,每种结构都因其独特的性质而开辟了新的应用领域。维度工程包括形态工程(将 3D 钙钛矿的厚度降低为原子薄膜)和分子工程(将长链有机阳离子掺入钙钛矿混合物中并在分子水平上改变组成)。钙钛矿结构的光电特性包括其带隙、结合能和载流子迁移率,取决于其组成和维度。本文将回顾使用不同成分和尺寸的钙钛矿制成的大量光电探测器和太阳能电池。最后,我们将讨论不同维度的动力学和动力学、其固有的稳定性和毒性问题,以及如何在较低维度上达到与 3D 类似的性能以及如何实现大规模部署。
0D 零维 1D 一维 2D 二维 3D 三维 AFM 原子力显微镜 AI 人工智能 AM 增材制造 AMO DOE 先进制造办公室 aPPO 无定形聚环氧丙烷 BES DOE 基础能源科学办公室 BRN 基础研究需求 CAMERA 能源研究应用高级数学中心 CT 计算机断层扫描 DFT 密度泛函理论 DOE 能源部 DPD 耗散粒子动力学 EDS 能量色散 x 射线光谱 EJ 艾焦耳 FEL 自由电子激光器 fs 飞秒 GHG 温室气体 HEDM 高能衍射显微镜 HPC 高性能计算 HTE 高通量实验 iPPO 环氧丙烷等规聚合 IR 红外 LED 发光二极管 Li 锂 MAS 魔角旋转 ML 机器学习 MOF 金属有机骨架 MS 质谱或微秒 NIST 美国国家标准与技术研究所 NOx 氮氧化物 NSLS 美国国家同步加速器光源 PCAST 总统科学技术顾问委员会 PDF 对分布函数 PRD 重点研究方向 ps 皮秒 R&D 研究与开发 s 秒 SAXS 小角度 x 射线散射 SEM 扫描电子显微镜/显微镜 SLM 选择性激光熔化 ssNMR 固态核磁共振 TEM 透射电子显微镜/显微镜 YAG 钇铝石榴石
二维(2D)过渡金属二北元化(TMD)是原子上薄的半导体,在整个可见光谱中具有有希望的光学应用。然而,它们本质上弱的光吸收和低光质量量子产率(PLQY)限制了它们的性能和潜在用途,尤其是在紫外线(UV)波长光范围内。衍生自2D材料(2D/QD)的量子点(QD)提供有效的光吸收和发射,可以调节能量的光波长。在这项研究中,我们通过与2D/QD的杂交(尤其是Ni-Tride MXENE MXENE MXENE MXENE MXENE MXENE QD(TI 2 N MQD)和nitride nitride QD)(GCD)(GCD)(GCD)(GCNQ)(GCNQ)(gcnqd),通过杂交与2D/QD杂交在UV范围内大大增强了单层(1L)二硫键(WS 2)的光子吸收和PLQ。With the hybridization of MQD or GCNQD, 1L- WS 2 showed a maximum PL enhancement by 15 times with 300 nm wavelength excitation, while no noticeable enhance- ment was observed when the excitation photon energy was less than the bandgap of the QD, indicating that UV absorp- tion by the QD played a crucial role in enhancing the light emission of 1L-WS 2 in our 0D/2D混合系统。我们的发现提出了一种方便的方法,用于增强1L-WS 2的光响应到紫外线,并为使用1L-TMD收集紫外线能量提供令人兴奋的可能性。
(选修I)单元I引入纳米材料和纳米技术,纳米结构的特征,纳米材料和技术的应用。nano尺寸材料0d,1d,2d结构 - 尺寸效应 - 表面原子的一部分 - 特异性表面能量和表面应力 - 对晶格参数的影响 - 状态的声子密度 - 可用于合成纳米结构的一般方法 - 降压 - 反应性 - 反应性 - 热热/溶解度热方法 - 用于量表的方法 - 适用于这种方法 - 适用于这种方法 - 适用于量表的方法。纳米材料,分类,零维纳米材料,一维纳米材料,二维纳米材料,三维纳米材料的II单元基本面。低维纳米材料及其应用,合成,性质和低维碳相关纳米材料的应用。III单元微观和纳米光刻技术,新兴应用介绍微电动机械系统(MEMS),MEMS的优势和挑战,制造技术,表面微加工,散装微机械,成型。纳米语音简介。第四单元引入,CNTS的合成 - 弧 - 释放,激光燃料,催化生长,CNT的生长机制 - 多壁纳米管的生长机制,CNT的单壁纳米管,CNT的单层纳米管,在完美的Nano Tubes中电气传输,应用于案例研究。CNT的合成和应用。单元V铁电材料,涂料,分子电子和纳米电子,生物和环境,基于膜的应用,基于聚合物的应用。教科书:
非热血浆辅助甲烷热解已成为轻度条件下氢生产的一种有希望的方法,同时产生了有价值的碳材料。在此,我们开发了一个等离子化学动力学模型,以阐明与氢气解析涉及氢和固体碳(GA)反应器内的甲烷热解的潜在反应机制。开发了一个零维(0D)化学动力学模型,以模拟基于GA的甲烷热解过程中的血浆化学,并结合了涉及电子,激发物种,离子和重物的反应。该模型准确地预测了与实验数据一致的甲烷转化和产品选择性。观察到氢与甲烷转化率之间存在很强的相关性,主要是由反应CH 4 + H→CH 3 + H 2驱动,对氢的形成贡献44.2%,而甲烷耗竭的37.7%。电子与碳氢化合物的影响碰撞起着次要作用,占H 2形成的31.1%。这项工作提供了对GA辅助甲烷热解中固体碳形成机制的详细研究。大多数固体碳源于通过反应E + C 2 H 2→E + C 2 + H 2 /2H的电子撞击C 2 H 2的分离以及随后的C 2缩合。c 2自由基被突出显示为固体碳形成的主要因素,占总碳产量的95.0%,这可能是由于C 2 H 2中相对较低的C - H解离能。这项动力学研究提供了对H 2背后的机制和在GA辅助甲烷热解过程中的固体形成机制的全面理解。
