影响溶解度的因素1。溶质的性质 - 离子比溶剂2。溶剂的性质 - 离子更可溶于极性水比非极性溶剂。3。温度变化,KNO 3,KCLO 3,AGNO 3,NANO 3在溶解水时吸收热量(Ca(OH)2释放在水中时。通过过滤确定物质的溶解度。溶质在特定温度下饱和溶剂的最大量的溶解度,在特定温度下以摩尔每dm³进行测量,因此,如果溶液是砂的溶液并用标准溶液与标准溶液中的过滤相关,则每个DM³的摩尔浓度也是溶解度。工作;溶液A为0.09摩尔HCl,通过在25°C下取25厘米的Na 2 Co 3的标准溶液获得溶液B,并用蒸馏水将其稀释至100厘米。25厘米的B完全用24.90厘米的A甲基橙作为指示。计算i。溶液B的浓度B在DM³II中的摩尔中。Na 2 Co 3在25°C下的溶解度,每dm³III。通过将饱和溶液的1dm³蒸发至干燥度获得的Na 2 Co 3的质量。解决方案;反应2HCl + Na 2 CO 3 2 NaCl + H 2 0 + CO 2摩尔比的等式:碱= 2:1 cava = Na Cbcb Nb cb = Cava NB VBNB CB = 0.090×0.02490×0.02490×1 0.025×2 = 0.0405moldm-- = 0.0405moldm-in = 0.0405moldm-ins v1 morc. 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25cin of v1 mor v1 mor v1 mor v1 0.045molfm-³c1v1= C2V2
摘要 本文的主要目的是研究轿车和方背车的空气动力学,测量阻力系数和车身周围的气流。研究阻力的方法有两种:通过 CFD 模拟气流和使用风洞实验。实验采用 1:20 的流行轿车和方背车铝制比例模型。实验在亚音速风洞上进行,试验段为(30cm x 30cm x 100cm)。使用 ANSYS CFX-13 进行计算分析。关键词——阻力、轿车、快背、风洞、空气动力学 CFD。引言已经进行了多种关于车辆尾部形状的空气动力学影响的研究,包括 Hucho 等人发现的临界几何研究。众所周知,汽车的尾部形状是决定气动阻力和升力的重要因素之一。[14]由于燃油消耗大,研究人员将大部分注意力集中在降低车辆阻力系数 (C d ) 上,该系数约占高速行驶总运动阻力的 75% 至 80%。车辆上方的气流决定了阻力,而阻力又会影响汽车的性能和效率。测试设备已设计用于测量模型车上空气阻力的垂直和水平分量[6]。但是,由于乘用车需要足够的容量来容纳乘客和行李,因此其发动机和其他部件所需的空间必须最小。实现空气动力学上理想的车身形状极其困难。汽车的车身形状并不完美,不像鱼和鸟那样是理想的流线型。这样的车身形状不可避免地伴随着尾部的流动分离[1]。对钝体阻力系数有重大影响的两个主要因素是其前角的圆度和尾部的锥度[1]。本文旨在通过实验和计算研究轿车和方背车的空气动力学。实验方法
目的:使用小体积电离室进行扁平过滤器(FF)和扁平过滤滤器(FFF)varian Truebeam stx线性加速器的扁平过滤器(FFF)横梁,研究小型和大型电离室的离子重组(K S)和极性校正因子(KPOL)。材料和方法:所有读数均以100厘米源到DMAX的表面距离(SSD)和10厘米深度的PTWBeamScan®水幻影进行测量,为6、10、10、15、6FFF和10FFF MEGA电压光光束,平方场的最大剂量速率为0.5×0.5cm2至30×30 cm2。分别雇用了两个离子腔室,例如PTW Semiflex 3d 31121和农民室30013,分别为0.07cc和0.6cc。根据国际原子能局技术报告系列(IAEA TRS 398)的第398号协议,从读数中计算了校正因子。用“两压方法”(TVM)获得的离子重组值用1/v对1/Q曲线(Jaffé-plot)验证了所有束能。结果:从结果来看,离子重组校正因子(K S)从未超过1.032,此外,Jaffé-Plot的结果与TVM值非常吻合(高达0.3%),除了方形0.5×0.5×0.5cm 2和1×1cm 2(最高8%)。KS值完全独立于所有光束能的场大小。KPOL值随场大小而独立于2×2cm 2的平方场差异,在2×2cm 2至10×10cm 2之间的平方场2×2cm 2中,绘图几乎显示了所有辐射条件的直线。对于所有平方场(0.5×0.5cm 2和1×1cm 2除外),FFF梁的K S和KPOL值分别差异为最大0.6%和0.1%。结论:小场剂量计的饱和电压大于剂量计的工作电压。小场的KS和KPOL值与标准字段(参考字段)不同。使用标准“两压方法”确定的KS可以充分考虑高剂量率FFF梁的高剂量率FFF梁。从FFF梁获得的结果不会显着偏离扁平的梁。平方场的不适当读数0.5×0.5cm 2和1.0×1.0cm 2可能是由于缺乏剂量计响应,这是由于缺乏侧向带电粒子平衡和腔室平均效果的结果。
