ICL7103A/ICL8052A A/D 转换器的基本电路保持不变。但是,需要进行一些修改以适应 100mV 参考。首先,修改参考电压分压器网络 (5.1k、1k) 以获得更高的分辨率。其次,将积分器电阻减小到 10k ,以便在 V IN = 200mV 时实现大约 8V 的积分器摆幅。第三,应使用 300k 电位器替换比较器转换网络中的 300k 固定电阻。当 V IN = 0V 时,应调整此电位器,直到显示屏读取相等间隔的正负符号。在自动归零期间,此网络将比较器输出提升至 ICL7103A 逻辑的阈值。连接在积分器电容上的两个 JFET 在严重超量程情况下保持积分器和自动归零电容的完整性。
-4.0V 至 -6.5V(100mV/Step)驱动能力高达 120mA ±1.5% 输出电压精度 出色的线路调整率 轻载时具有 PFM 模式的开关电容 适用于轻载的高级省电模式 可编程有源放电 支持 I2C 兼容接口 集成补偿和反馈电路 1uA 关断电源电流 升压电流模式操作 逐周期电流限制 内部软启动可防止浪涌电流 欠压锁定 过温保护 1.4MHz 固定开关频率 专有的开关损耗降低技术 小解决方案尺寸 符合 RoHS 和绿色标准 节省空间的 15 球 WLCSP(1.17mm x 1.97mm)封装 -40 ℃ 至 +85 ℃ 温度范围
测量电容 (Cs/Cp)、电感 (Ls/Lp)、电阻 (Rs/Rp)、参数:耗散 (DF) 和品质因数 (Q)、阻抗 |Z|、导纳 |Y|、相位角 ( )、等效串联电阻 (ESR)、电导 (Gp)、电抗 (Xs)、电纳 (Bp) 同时测量和显示的任意两个参数注意:s = 串联,p = 并联,ESR 相当于 Rs 测量 |Z|、R、X:000.0001 mohm 至 99.99999 Mohm 范围:|Y|、G、B:00000.01 S 至 9.999999 MS C:00000.01 fF 至 9.999999 F L:0000.001 nH 至 99.99999 H D:.0000001 至 99.99999 Q:.0000000 至 999999.9 相位角:-180.0000 至 +179.9999 度 Delta %:-99.9999 % 至 +99.9999 % 测量基本增强扩展精度:LCR:+/- 0.5%* +/- 0.25%* +/- 0.05%* DF:+/- 0.0050 +/- 0.0025 +/- 0.0005 * 在最佳测试信号电平、最佳 DUT 值且无校准不确定度误差的情况下。使用大约 7000 个附件装置和电缆时,仪器精度可能会低于标称规格。最佳精度要求开路/短路调零期间使用的几何一致性与实际测量过程中装置和电缆上使用的几何一致性。使用非屏蔽开尔文夹和镊子型连接时,这种一致性可能尤其难以实现。实施负载校正并与用户提供的标准进行比较后为 0.25 x(正常精度)。在 3 Z 80k 范围内,100mV 编程 V 1V 或 100mV (编程 I) x (Z) 1V 测试频率:10 Hz 至 500 kHz 分辨率:0.1 Hz 从 10 Hz 至 10 kHz,5 位数字 > 10 kHz 精度:+/-(0.002% +0.02 Hz) 测量速度:基本精度:25 毫秒*/测量增强精度:125 毫秒*/测量扩展精度:1 秒*/测量 * 可能更长,具体取决于测试条件和频率测距:自动或量程保持
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。此电路是应用说明 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于补偿电阻器 R S 对桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 R S 串联的 100Ω 微调电位器调整。这里使用的 R PLAT 值低于 AN43 中的值,以提高动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。此范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。此电路是应用说明 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于补偿电阻器 R S 对桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 R S 串联的 100Ω 微调电位器调整。这里使用的 R PLAT 值低于 AN43 中的值,以提高动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。此范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
闪电是在云中启动的,而不仅仅是任何云。它们通常是巨大的,高度约为5 - 12公里甚至更高,宽度为5 - 10公里(Dehn,2014; Uman,2008)。这些云是由于电荷分离而导致的,后者在粒子碰撞期间在云中非常高的湍流下发生。这会导致相反的电荷颗粒分离,导致云中的电势很高,范围从10mV到100mV,甚至最高为200mV,具体取决于云。然后将该潜力放到地面或其他带电的尸体中,其中可能包括;到同一云中其他相对带电的区域(内部云),另一个云(云层)或空气(云到空气)的相对充满电的区域。放电过程是闪电的诞生。因此,闪电是从带电云引发的相对充满电的物体之间带电颗粒的大规模静电排放。(AFA&Kelvin,2013; Akinyemi等,2014; Betz等,2009; Dwyer&Uman,2014;Horváth,2006; Lucas,2001; Rakov&Uman,2003; Uman,2003; Uman,2008)
