摘要目的:标准化基于激素的种子涂料制剂的剂量,以增强香菜种子的发芽和幼苗生长。研究设计:完全随机的设计。研究地点和持续时间:印度哥印拜陀泰米尔纳德邦农业大学种子科学技术系。方法论:香菜种子用不同浓度的基于激素的种子涂料聚合物涂覆,并以四种复制的滚动毛巾法进行了发芽研究。结果:基于激素的种子涂料配方的发芽率%(69%),根长度(16.75厘米),芽长(7.9厘米),干物质产量(0.058 g/10幼苗),活力指数I(1706)和II(1706)和II(3.9)和10g Polymer/kg polymer/kg polymer/kg of Seed exeed of Edeepy of Seedeed of Seed和290ml and 290ml。结论:用10克激素的种子涂料制剂溶解在290 mL水中的种子涂层增强了种子发芽和幼苗生长关键词:[Coriandrum sativum,种子涂料,剂量,剂量,发芽,活力] 1。引言Coriandrum sativum属于家庭apiaceae。它通常被称为香菜,也是印度最重要的香料作物之一。它的叶子用于烹饪目的[1]。它是在全球培养的,用于种子,叶子用作种子被用作香味果实和调味剂[2]。香菜具有广泛的药用特性,包括催眠,抗焦虑,抗惊厥作用,安替尼德剂。它还可以增强记忆力,进展,口头运动障碍,并提供抗菌,神经保护性,抗真菌和驱虫剂益处。此外,香菜表现出杀虫剂,抗氧化剂,抗炎,降低性,心血管,抗糖尿病和镇痛特性[3]。种子的增强是指收获后治疗,这对于播种时的发芽改善,幼苗的生长和缓解种子的递送至关重要[4]。种子涂层被认为是通过增强种子的生理和物理品质来促进可持续农业的有效方法。此过程有助于提高种植效率,提高生长参数,并减轻非生物胁迫和生物应力[5]。
糖尿病是一种全球流行病,印度人口的患病率显着较高[1]。众所周知,糖尿病会导致各种并发症,糖尿病周围神经病(DPN)是最严重的[2]。研究报告说,约有50%的糖尿病患者有发展DPN的风险[3]。一项先前的研究报告了印度糖尿病人口中DPN的患病率为18-61%,这是糖尿病足综合征和溃疡病的患者的主要因素[4]。还报道说,DPN由于其使人衰弱的并发症导致所有领域的生活质量差,因此对糖尿病患者施加了重大的经济负担[5,6]。DPN导致严重的神经功能障碍,导致感觉改变和保护意义的丧失。由于分布更具外围性,因此由于没有完整的感觉反馈疾病潜在的感觉反馈而施加的足底压力,脚部受伤和并发症的风险更高。因此,早期筛选成为最大的价值。有用于临床和研究目的的多种定性和定量DPN筛选工具。用于DPN的金色标准工具是神经传导研究(NCV)[7]。但是,在大多数印度卫生设置中,NCV的使用非常昂贵。因此,NCV并不是社区健康中DPN工具的选择。社区中广泛使用的临床工具包括筛选问卷,可以表明具有可靠性和灵敏度的DPN的可能性。一种常用的工具是密歇根州神经病筛查仪器(MNSI),由两个部分组成。部分“ a”由一个自我管理的查询范围组成,以了解病史和症状,并且“ B”部分由身体检查组成,包括评估保护感(使用10 g单丝)和振动(使用BiotheSiiomer)。这是经济易用的临床实践,但可能会有次要的错误。尽管这些问卷可能需要更多的时间,并且缺乏客观措施的精度,但它们适用于临床诊断。与NCV相比,目前可用于DPN的最可靠,最灵敏的非侵入性客观仪器是一种振动压力阈值设备或生物效率计,可产生量化的结果,也可以帮助分层DPN的严重程度[8]。此外,Weinstein 10 G单丝在印度的主要社区医疗环境中广泛使用,因为它具有成本效益且易于使用,可用于与MNSI(例如MNSI)结合使用DPN筛查的临床评估。使用DPN对NCV进行了10 g单丝的可靠性和有效性[9]。各种研究报告了单丝测试在筛选DPN中的有效性。据报道,它在临床使用方面非常有效。Weinstein Monofilagent施加的压力为10 g,任何普通人都应检测到排除DPN的存在,并且已经使用了很高的成功。因此,但是,由于其在给定的地理区域中糖尿病患者的人口,社会,种族,宗教和职业特征的差异,可能会引起人们对其敏感性的关注。否研究报告了关于地理变化中DPN的10 g单丝测试的灵敏度和特异性的发现。根据我们的临床经验,我们了解到,由于影响印度这样的国家的各种因素,由于各种因素影响了生活方式,因此使用10 g单丝DPN的准确性可能会受到质疑。例如,足底筋膜的厚度可能有所不同,使用鞋类的变化,个人护理,诸如长期存在等职业等。尤其是,印度人口的社会人口统计学特征有所不同,这可能会影响DPN的10 g单丝准确性,并且文献中存在差距,暗示没有这种发现。该研究假设,在MNSI“ B”中,可以针对更可靠的VPT生物仪进行测试,认为10G单菲尔可能无法准确地评估印度人群中DPN的临床评估。
化学系 波普学院(自治学院),Sawyerpuram 628 251,泰米尔纳德邦 附属于 MS 大学,Tirunelveli - 627 012,泰米尔纳德邦,印度 摘要 - 使用八角茴香提取物通过绿色合成方法合成了一种有效的氧化锰纳米粒子。 通过紫外可见光、傅立叶变换红外光谱、原子力显微镜和扫描电镜研究对制备的纳米粒子进行了表征。 氧化锰纳米粒子的紫外可见光光谱显示最大吸收在 250 nm 和 300 nm 左右。 这是因为 n → π* 和 π → π* 跃迁。 氧化锰的 FT-IR 光谱显示 Mn–O 振动峰以 580 cm -1 为中心,而另一个以 1627 cm -1 为中心的明显峰是 Mn 原子上的 O–H 伸缩振动。利用AFM和SEM表征表面形貌。以亚甲蓝作为有机污染物,评价了氧化锰纳米粒子对染料降解的光催化活性。关键词:氧化锰,紫外-可见光,SEM,光催化活性,亚甲蓝1.引言绿色合成是一种环境友好的方法,它代表了化学领域的一种不同思维方式,旨在消除有毒废物,降低能耗,使用水、乙醇、乙酸乙酯等生态溶剂。纳米材料作为新型抗菌剂出现,具有高表面积与体积比和独特的物理化学性质[1]。氧化锰纳米粒子广泛用于污染物传感、药物输送、数据存储、催化和生物医学成像。随着人们对环境污染的关注度日益提高,纳米粒子的绿色合成变得非常重要。基于绿色化学的纳米粒子合成由于其生态友好的性质而受到青睐。氧化锰纳米粒子在催化、离子筛、充电电池、化学传感装置、微电子和光电子等多个领域有着广泛的应用,引起了人们的广泛关注。[2-9] 本研究采用绿色方法制备了氧化锰纳米粒子,并通过紫外-可见光、傅里叶变换红外和扫描电子显微镜分析方法进行了表征。合成的氧化锰纳米粒子在可见光区对染料降解表现出光催化活性。 2.实验 2.1 氧化锰纳米粒子的制备 在典型的反应过程中,将 3.2 g 硫酸锰和 1.0 g 聚乙二醇溶解在 50 mL 水中。然后加热溶液直至溶解。加入6.56g乙酸钠和50mL新鲜制备的八角茴香提取物(Illicium verum)溶液,室温下剧烈搅拌3小时,过滤所得溶液,洗涤、分离纳米颗粒,在90℃真空干燥箱中干燥12小时,保存待进一步研究。2.2.八角茴香提取物的制备 取约10g新鲜八角茴香,用蒸馏水彻底清洗以除去灰尘颗粒。将洗净的八角茴香切成小块,放入带水冷凝器的圆底烧瓶中,在100mL蒸馏水中煮沸1小时。用Whatman No.41过滤提取物,得到纯提取物。 2.3. 光催化活性 ` 在本研究中,使用著名染料亚甲蓝作为探针分子来评估合成纳米粒子在直射阳光下的光催化活性。选择亚甲蓝在665nm处的特征光吸收峰来监测光催化降解过程。实验按照以下步骤进行。 2.4. 步骤 ` 每次测量时,将0.05g样品加入100mL浓度为0.0031g/L的亚甲蓝水溶液中。将悬浮液在黑暗中搅拌约一小时,以确保亚甲蓝在纳米颗粒表面的吸附和解吸平衡建立。然后将溶液暴露在阳光下。在平衡后以10分钟的恒定时间间隔提取3毫升悬浮液,然后离心以将纳米颗粒与上清液分离。用JASCO V650 UV-Vis分光光度计测量上清液的紫外-可见吸收光谱。使用以下公式计算染料降解的百分比:降解百分比=
