摘要:利用四类相位编码刺激,开发了基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)系统。将高于临界融合频率(CFF)的60Hz闪烁光诱发的SSVEP与15Hz和30Hz的SSVEP进行比较。采用任务相关成分分析(TRCA)方法检测脑电图(EEG)中的SSVEP成分。对17名受试者的离线分析表明,60Hz的最高信息传输速率(ITR)为29.80±4.65bpm,数据长度为0.5s,分类准确率为70.07±4.15%。在线BCI系统在4s的60Hz下达到平均分类准确率为87.75±3.50%,ITR为16.73±1.63bpm。具体来说,受试者在60Hz下的最大ITR为80bpm,持续时间为0.5s。虽然60Hz的BCI性能低于15Hz和30Hz,但行为测试的结果表明,在无闪烁感知的情况下,60Hz的BCI系统比15Hz和30Hz的BCI系统更舒适。相关性分析表明,信噪比(SNR)较高的SSVEP对应更好的分类性能,舒适度的提高伴随着性能的下降。本研究证明了使用无感知闪烁的用户友好型SSVEP BCI的可行性和潜力。
产品特点和控制 低音炮 您的新型数字硬盘低音炮的突出特点包括: • 锥体和电机尺寸: - 10 英寸(8 英寸活塞直径)或 12 英寸(9.7 英寸活塞直径)锥体,带 310 盎司磁铁,或, - 15 英寸(12.7 英寸活塞直径)或 18 英寸(15.2 英寸活塞直径)锥体,带 380 盎司磁铁。磁铁 • 内置 1250 瓦 (RMS)、3,000 瓦峰值功率高效 D 类放大器 • 串联 3 英寸音圈 • 多层树脂层压锥体 • 高偏移橡胶环绕 • 增益压缩、防削波电路,可防止过度偏移和放大器削波 • 固定 80Hz 高通分频器(RCA 输出) • 平衡 (XLR) 输入 • 线路电平 (RCA) 输入和吞吐量 • 扬声器电平输入 • 可变音量控制 • 频率响应 20Hz - 120Hz +/-3dB • 可拆卸 6 英尺交流电源线 • 四个橡胶 1/4 --20 螺纹支撑脚(15 英寸和 18 英寸型号为带橡胶插件的铝制) • 屏幕控制: - 自动均衡器/自我均衡器 - 用于房间均衡器的图形或参数均衡器控制 - 可调(15Hz - 199Hz)低通分频器(可禁用) -多个交错低通分频器(6dB/倍频,初始到 36dB/倍频,最终) - 可调(15Hz - 35Hz)亚音速滤波器(可禁用) - 多个交错亚音速滤波器(12dB/倍频,初始到 24dB/倍频,最终) - 可变音量控制 - 可调相位控制(0° - 180°,以 15° 为增量) - 可选极性(+/-)
摘要 — 本文通过脑机接口 (BCI) 解决了在室内自然环境中人形机器人远程操作的挑战。我们利用基于深度卷积神经网络 (CNN) 的图像和信号理解来促进实时物体检测和基于干脑电图 (EEG) 的人类皮层大脑生物信号解码。我们利用干脑电图技术的最新进展来传输和收集受试者的皮层波形,同时他们注视机器人正在导航的环境直接产生的可变稳态视觉诱发电位 (SSVEP) 刺激。为此,我们建议使用新的可变 BCI 刺激,利用通过机载机器人摄像头传输的实时视频作为 SSVEP 的视觉输入,其中 CNN 检测到的自然场景物体会以不同的频率 (10Hz、12Hz 和 15Hz) 发生改变和闪烁。这些刺激与传统刺激不同,因为闪烁区域的尺寸及其在屏幕上的位置都会根据检测到的场景物体而变化。通过这种基于干脑电图的 SSVEP 方法进行屏幕上的物体选择,有助于通过专门的二级 CNN 将人类皮层大脑信号直接在线解码为遥控机器人命令(接近物体,朝特定方向移动:向右、向左或向后)。该 SSVEP 解码模型是通过先验离线实验数据进行训练的,其中所有受试者的视觉输入都非常相似。在跨多个测试对象的实时机器人导航实验中,最终的分类表现出高性能,平均准确率为 85%。
图4。当实施使用SSVEP的BCI系统时,需要合理的刺激频率范围,通常,通常,该范围通常是从15Hz到35Hz。此外,还会同时引起刺激闪光频率的夸隆组分的振动成分,因此,如果将一个刺激的闪光频率的载体组件用作不同刺激的闪光频率,则歧视精度的闪光频率将降低[7]。 SSVEP对BCI的评估涉及识别精度率,信息转换率(位/分钟)和检测间隔(SEC)等。一个示例是一个系统应用程序,用于根据SSVEP原理使用大脑进行呼叫。当在液晶显示器上执行SSVEP刺激器时,它们可以闪烁的频率受到显示刷新速率的限制,因此很难使用SSVEP显着增加BCI的命令数量。最后,如果将闪烁刺激应用于癫痫患者,则可能会严格禁止对患有癫痫病史的受试者进行癫痫发作的癫痫发作。 2.3 P300引起的潜在p300是一个积极的潜力,在刺激发作后长期存在约300毫秒(图5)[8],通过随机呈现两种或多种类型的感觉刺激(视听,视觉,视觉,味道,触摸等),可以与彼此区分,并通过选择性地注意对低效率刺激(图5)[8)[8] [8)。例如,它是与视觉刺激引起的枕骨优势相关的潜在组成部分,并且在相对较早的潜伏期约为200 ms的情况下观察到。诱导的视觉响应组件包含多种组件,其潜伏期和名称因提出的刺激的特征而有所不同。此外,听觉刺激引起的成分称为听觉诱发电位。人们认为该疾病的根源是颞叶中听觉区域的颞叶和视觉床。刺激后100-200ms观察到大的负和正成分。因此,刺激表现后出现200-500ms的大脑活动反应很常见。在两项选择的奇数任务的情况下,目标是低频刺激和未定位的刺激,典型的比例为2至8。
