• 投资额超过 150 亿美元 • 2,700 名员工、科学家和工程师 • 164k 平方英尺洁净室空间 • 超过 200 个行业合作伙伴 • 3 亿美元/年运营预算 • 1.5 亿美元/年资本支出设备预算
- 可可固定:可可固定是一个大规模的语义分割数据集,其中包含164k图像,带有171个带注释的类,分为训练集(118k映像),验证集(5K图像)和测试集(41K图像)。在我们的实验中,我们使用完整的118K训练集作为训练数据来训练语义模型。- 可可式式:可可式跨跨培训图像与可可固定相同的训练图像。这些图像被标记为133个类别。在我们的经验中,我们使用可可式式跨跨景模型。- Pascal-voc:Pascal-Voc包括1,449张图像,用于20个宣传类。在开放式语义语义分割中,所有20个类均用于评估(称为PAS-20)。- ADE20K:ADE20K是一个大规模的场景,理解数据集构成了2K图像,用于验证两种注释:一种具有150个类的班级,带有Panoptic注释,另一个带有847个课程的语义注释。对于开放式语义语义分割,我们在ADE20K的两个设置上评估了我们的方法:150个类(称为A-150)和847类(称为A-847)。在开放式综合综合分割中,我们使用带有150个类注释的设置进行评估。
