Debio 0432是临床前阶段的USP1抑制剂。该分子预计将在变构袋中结合USP1,并且在DUB家族的58个成员中非常有选择性。DEBIO 0432 USP1上的生化活性低于1NM低于1NM,比其他USP1抑制剂(KSQ-4279/RG-6614)高20倍。单一疗法活性。在体内,Debio 0432显示了BRCA突变乳腺癌模型MDA-MB-436和BRCA WT NCI-H292肺癌模型中的抗肿瘤活性。以剂量和血浆暴露依赖性方式调节下游目标UB-PCNA,被选为药效标记。进一步的患者衍生异种移植物(PDX)模型的体内实验显示了不同癌症类型的抗肿瘤活性。在活性剂量时,所有体内研究中的治疗方法都得到很好的耐受性。
摘要:纳米台阶作为经典的纳米几何参考材料,在半导体工业中用于校准测量,因此控制纳米台阶的高度是保证测量准确的关键。为此,本研究采用原子层沉积(ALD)结合湿法刻蚀制备了形貌良好的高度为1,2,3和4nm的纳米台阶。利用三维保形ALD工艺有效控制制备的纳米台阶的粗糙度。此外,使用基于仿真的分析研究了表面粗糙度与高度之间的关系。本质上,粗糙度控制是制备临界尺寸小于5nm的纳米台阶的关键。在本研究中,通过ALD和湿法刻蚀相结合成功实现的纳米台阶的最小高度为1nm。此外,基于1nm纳米台阶样品,分析了标准材料质量保证的前提条件和制备方法的影响因素。最后,利用制备的样品进行时间依赖性实验,验证了纳米台阶作为参考材料的最佳稳定性。这项研究对制备高度在5纳米以内的纳米几何参考材料具有指导意义,并且该方法可以方便地用于制备晶片尺寸台阶高度参考材料,从而实现其在集成电路生产线中大规模工业化在线校准应用。
ATD-300 交通监视系统是一种无源接收器,能够检测附近飞机的应答器应答,并在 8 字符点阵黄色 LED 显示屏上显示其范围和高度。它还提供与交通接近度相关的独特语音警告。ATD-300 的检测范围为 5 海里。该系统由接收器/指示器单元、天线、电源线和耳机线组成。接收器安装在一个小铝盒中,便于在驾驶舱内定位。ATD-300 为不同范围的交通提供独特的语音警告。当设置为 FAR 模式并且交通在 3 海里和垂直间隔 +1,000 英尺以内时,将发出“交通”警报。当交通距离接近 1nm 左右且垂直间隔在 +1000ft 以内时,消息将更改为“附近交通”。当设置为 NEAR 模式时,只有垂直间隔在 1nm 和 +500ft 以内的交通才会显示“附近交通”。当设置为 MUTE 时,不会出现任何交通警告消息,但仍会显示交通范围和 MSL 高度。当没有交通活动时,ATD-300 将自动显示主机应答器 MSL 压力高度或应答机代码。设备底部有一个可用螺丝刀调节的音量控制。设备背面提供音频输出至扬声器(8 欧姆)或耳机(300 欧姆)。ATD-300 具有内置电压警告指示器,可让您知道飞机电源电压是否超出范围。此功能始终在后台运行,并在发动机启动后激活。如果存在超出范围的情况,ATD-300 会通过语音和文本发出通知。
PBN 以性能标准的形式描述了飞机的导航能力。这些标准,例如区域导航 (RNAV) 或所需导航性能 (RNP) 导航规范 (NavSpecs),可在地面或空间导航辅助设施覆盖范围内,或在飞机自带导航能力范围内,在任何所需飞行路径上实现横向和/或垂直导航。一般而言,RNAV 和 RNP 导航规范相同,但 RNP 增加了机载性能监控和警报功能。NavSpec 通常用横向精度值来描述(例如,RNP 1 为 1NM),并指定与仪表飞行操作或仪表飞行特定航段相关的预期 95% 横向导航 (LNAV) 性能。
根据2021年国际器件与系统路线图(IRDS),环栅晶体管(GAA)将从3nm技术节点开始取代FinFET,并应用于1nm技术节点。下一步,尺寸缩小的目标不仅是降低漏电,更重要的是降低功率,而包括三维异质集成在内的三维垂直架构将成为降低功耗的主流技术。要延续摩尔定律,不仅需要通过器件尺寸缩小来提高电路集成度,还需要降低功率和提高开关速度。堆叠式NSFET具有更好的静电完整性、短沟道免疫力,因此具有更好的功率缩放性能,是未来亚3nm技术节点的有希望的候选者[1−3]。
纳米技术定义 纳米技术是在原子、分子或超分子尺度上对材料进行操纵,尺寸范围为 1nm - 100nm,至少在其形状的一个维度上进行操纵。纳米化学是研究 1nm - 100nm 尺寸范围内材料中原子或分子的相互作用。 溶胶凝胶工艺 溶胶凝胶工艺是一种化学溶液沉积技术,可以描述为通过液体中分子前体的水解和缩聚反应形成氧化物网络。在此过程中,化合物溶解在液体中,以便以受控方式将其恢复为固体。溶胶是胶体颗粒或聚合物在溶剂中的稳定分散体。凝胶由三维连续网络组成,它包围着液相。在胶体凝胶中,网络由胶体颗粒聚集而成。溶胶凝胶化学基于烷基金属氧化物 M(OR) z 如 Si(OEt) 4 的水解和缩合,可描述如下 MOR + H 2 O MOH + ROH(水解) MOH + ROM MOM + ROH(缩合)溶胶凝胶过程可通过一系列不同的步骤来表征步骤 1:形成醇盐金属前体(溶胶)的不同稳定溶液步骤 2:由于缩聚形成金属氧化物或金属氢氧化物桥接网络而导致的凝胶化,这会增加溶液的粘度步骤 3:凝胶的老化,在此过程中缩聚反应持续直至凝胶转变为固体。步骤 4:干燥凝胶,将水和其他挥发性液体从凝胶网络中除去(干凝胶)步骤 5:脱水,通过在高达 800 o C 的温度下煅烧整块材料来实现(气凝胶)步骤 6:在高温下使凝胶致密化和分解,即 >800 o C。(凝胶膜)优点低温、廉价技术。避免共沉淀,可提取和生长前体混合物局限性控制颗粒的生长,生产速度非常慢。
图3给出了不同AlN间隔层厚度下二维电子气密度的变化。间隔层厚度越高,片状电荷密度(ns)越好,在0.5nm~2nm之间与AlN间隔层厚度几乎呈线性关系。电子密度的增加是由于压电和自发极化的影响。由于明显的极化效应,AlN间隔层可能引起偶极散射增加,结果二维电子气迁移率下降。在此临界厚度以下,间隔层增强了导带位移,有效降低了波函数对AlN势垒的穿透,从而降低了合金无序扩散的影响。电子片密度为1.81×1013cm-2,与[15]中计算的1nm AlN层电子片密度大致相同。
图 1. 全基因组 Cas9 杀灭筛选揭示了大规模消耗模式。a) 在携带受 Ptet 启动子控制的 cas9 的大肠杆菌菌株 LC-E19 中引入全基因组的向导 RNA 文库。细胞在 1nM aTc 存在下生长,并在诱导前和诱导后几小时对向导 RNA 文库进行测序。b) 散点图显示基因组周围向导的 log2FC。黑线表示窗口大小为 6kb 的移动平均值(圆外线:log2F=2,圆心:log2F=-6)。c) aTc 诱导 2H、4H 和 6H 后基因组周围向导 RNA 消耗的移动平均值。d) 在不同向导 RNA 存在下进行 Cas9 诱导后的延时显微镜检查。e) qPCR 测量的质粒拷贝数倍数变化,以非靶向对照为标准。点表示独立的生物学重复,黑条表示中位数。
