1 西安交通大学电子材料研究实验室,教育部重点实验室,国际电介质研究中心,电子科学与工程学院,微纳制造与测试技术国际联合实验室,西安 710049,中国 2 中国科学院微电子研究所,微电子器件与集成技术重点实验室,北京 100029,中国 3 中国科学院大学,北京 100049,中国 4 西安交通大学机械制造系统工程国家重点实验室 & 微纳制造与测试技术国际联合实验室,西安 710049,中国 5 IHP-Leibniz-Institut für innovative Mikroelektronik,Im Technologiepark 25, 15236 Frankfurt,德国 6 上海交通大学信息功能材料国家重点实验室中国科学院微系统与信息技术研究所,上海市长宁路 865 号,邮编 200050,中华人民共和国 7 这些作者对这项工作做出了同等贡献。∗ 任何通讯作者均应致函。
基于忆阻器的神经形态计算在高速、高吞吐量信号处理应用(如脑电图 (EEG) 信号处理)中显示出巨大潜力。尽管如此,单晶体管单电阻 (1T1R) 忆阻器阵列的大小受到器件非理想性的限制,这阻碍了大型复杂网络的硬件实现。在本文中,我们提出了深度可分离卷积和双向门循环单元 (DSC-BiGRU) 网络,这是一种基于 1T1R 阵列的轻量级且高度稳健的混合神经网络,通过混合 DSC 和 BiGRU 块,能够在时间、频率和空间域中有效处理 EEG 信号。在确保网络分类准确性的同时,网络规模减小了,网络稳健性提高了。在模拟中,通过统计分析将测得的 1T1R 阵列的非理想性带入网络中。与传统卷积网络相比,在阵列成品率95%、容错率5%的条件下,网络参数减少了95%,网络分类准确率提高了21%。该工作表明,基于忆阻器阵列的轻量级、高鲁棒网络对于依赖低消耗和高效率的应用具有巨大的前景。
鉴于数据量的越来越多,有一个显着的研究重点是硬件,可提供低功耗的高计算性能。值得注意的是,神经形态计算,尤其是在利用基于CMO的硬件时,已经表现出了有希望的研究成果。此外,越来越强调新兴突触设备(例如非挥发性记忆(NVM)),目的是实现增强的能量和面积效率。在这种情况下,我们设计了一个硬件系统,该硬件系统采用了1T1R突触的一种新兴突触。Memristor的操作特性取决于其与晶体管的配置,特别是它是位于晶体管的源(MOS)还是排水口(MOS)。尽管其重要性,但基于Memristor的操作电压的1T1R配置的确定仍然不足以在现有研究中探索。为了实现无缝阵列的扩展,至关重要的是要确保单位单元格适当设计以从初始阶段可靠地操作。因此,对这种关系进行了详细研究,并提出了相应的设计规则。香料模型。使用此模型,确定最佳晶体管选择并随后通过仿真验证。为了证明神经形态计算的学习能力,实现了SNN推理加速器。此实现利用了一个基于在此过程中开发的验证的1T1R模型构建的1T1R数组。使用降低的MNIST数据集评估了精度。结果证明了受大脑功能启发的神经网络操作成功地在高精度而没有错误的硬件中实现。此外,在DNN研究中通常使用的传统ADC和DAC被DPI和LIF神经元取代,从而实现了更紧凑的设计。通过利用DPI电路的低通滤波器效应来进一步稳定该设计,从而有效地降低了噪声。
摘要 - 纳米级候选人的出现提出了能够构建CMOL(CMOS/纳米线/分子)类型的超密集内存内计算电路架构的希望。在CMOL中,将在纳米线的交点上制造纳米级备忘录。CMOL概念可以通过在CMO上制造较低密度的神经元并与纳米线和纳米级 - 墨西哥纤维织物放置在顶部的纳米线和纳米级 - 梅斯托织物,从而在神经形态硬件中利用CMOL概念。但是,技术问题阻碍了目前可靠的可靠商业单片CMOS-MEMRISTOR技术的这种开发。一方面,每个备忘录都需要串联的MOS选择器晶体管,以确保大型阵列的形式和编程操作。这会导致复合Mos-Memristor突触(称为1T1R),这些突触不再是纳米线穿越时的突触。另一方面,回忆录尚未构成高度可靠,稳定的模拟记忆,用于逐步学习的大规模模拟重量突触。在这里,我们演示了一种伪 - 旋转整体芯片核心,该芯片绕过上面提到的两个技术问题:(a)利用一种类似CMOL的几何芯片布局技术来提高1T1R的限制,以及(b)利用二进制重量跨度的依赖性依赖性(s sTD),该规则(b)更大的二进制重量跨度的依赖性(b)使用的备忘录。实验结果是针对具有64个输入神经元,64个输出神经元和4096 1T1R突触的尖峰神经网络(SNN)CMOL核心提供的,该突触在顶部为200nm大小的TI/HFOX/TIN MEMRISTOR的130nm CMO制造。cmol-core使用查询驱动的事件读取,这允许内存可变性不敏感的计算。实验系统级别的演示是针对普通模板匹配任务的,以及正则化的随机二进制STDP特征提取学习,可在硬件中获得完美的识别,以进行4个字母的识别实验。
摘要:对两种类型的人工神经网络(ANN)进行了全面分析,以评估量化对突触权重的影响。常规多层pepceptron(MLP)和卷积神经网络(CNN)已通过更改其特征来考虑。采用了基于带有双极重复器的1T1R结构的参考技术,其中包括H fo 2介电,考虑了不同的多级方案以及相应的电导量化算法。深入研究了图像识别过程的准确性。这种类型的研究在硬件实施神经网络之前至关重要。获得的结果支持将CNN用于图像域。这与卷积层在提取图像特征和降低数据复杂性方面所起的作用有关。在这种情况下,与MLP相比,突触权重的数量可以减少。
本最终技术报告详细介绍了 AFRL 拨款 FA8750-18- 2-0122 下取得的成果。该项目的总体目标是开发一个基于忆阻器的神经形态计算硬件平台。在简要介绍背景和原理之后,介绍了技术方法。以下各节总结了设备、阵列和集成系统级别的研究成果。利用我们之前在设备开发和单晶体管单电阻 (1T1R) 阵列集成方面的成就,我们实现了全硬件忆阻多层神经网络,集成了用于并行图像和视频处理的三维 (3D) 忆阻器阵列,并构建了用于时间编码计算的新测试器。我们还开发了新的选择器设备,展示了单选择器单电阻 (1S1R) 阵列集成,展示了储层计算,并提出了扩散和漂移忆阻器的统一紧凑模型。
关键词;UTBB 28nm FD-SOI、模拟 SNN、模拟 eNVM、eNVM 集成。2. 简介基于新兴非易失性存储器 (eNVM) 交叉开关的脉冲神经网络 (SNN) 是一种很有前途的内存计算组件,在边缘低功耗人工智能方面表现出卓越的能力。然而,eNVM 突触阵列与 28nm 超薄体和埋氧全耗尽绝缘体上硅 (UTBB-FDSOI) 技术节点的共同集成仍然是一个挑战。在模拟脉冲神经网络 (SNN) 中,输入神经元通过一电阻一晶体管 (1T1R) 突触与输出神经元互连,计算是通过突触权重将电压尖峰转换为电流来完成的 [1]。神经元将尖峰积累到预定义的阈值,然后产生输出尖峰。神经元区分和容纳大量突触和输入脉冲的能力与神经元放电阈值的电压摆幅直接相关。这主要取决于膜电容、突触电荷的净数量和低功率神经元的阈值 [2]。
关键字; UTBB 28NM FD-SOI,Analog SNN,Analog Envm,Envm Integration。2。简介基于新兴的非易失性记忆(ENKM)横杆的尖峰神经网络(SNN)是有希望的内存计算组件,这些组件具有出色的能力,可在边缘低功率人工智能。然而,Envms突触阵列与28nm超薄体和掩埋的氧化物完全耗尽的硅在绝缘子中(UTBB-FDSOI)技术节点的结合是一个挑战。在模拟尖峰神经网络(SNN)中,输入神经元通过单位驱动器透射器(1T1R)突触与输出神经元互连,并通过突触量通过突触转换为电流的电压尖峰来完成计算[1]。神经元会积聚尖峰到预定义的阈值,然后产生输出尖峰。神经元能力区分和容纳大量突触和输入尖峰的能力直接与直至神经元的射击阈值的电压摆动直接相关。这主要取决于膜电容,突触电荷的净数和低功率神经元的阈值[2]。
摘要:我们对硬件神经网络(NN)进行了不同的仿真实验,以分析不同数据集在网络准确性中不同NN体系结构的突触数量的作用。一项在4 kbit 1T1R reram阵列上的技术,其中采用了基于H FO 2电介质的电阻开关设备作为参考。在我们的研究中,考虑了完全致密的(FDNN)和卷积神经网络(CNN),在这种情况下,在突触的数量和隐藏层神经元的数量方面,NN的大小各不相同。cnns效果更好。如果包括量化的突触权重,我们观察到随着突触的数量减少,NN的精度显着降低。在这方面,必须实现突触数量与NN准确性之间的权衡。因此,CNN架构必须经过精心设计;特别是,注意到不同的数据集根据其复杂性需要特定的架构以取得良好的结果。表明,由于可以在NN硬件实现的优化中更改的变量数量,因此必须在每种情况下都在突触重量级别,NN体系结构等方面使用特定的解决方案。
与人类视觉相比,由图像传感器和处理器组成的传统机器视觉由于图像感测和处理在物理上分离,存在高延迟和大功耗的问题。具有大脑启发视觉感知的神经形态视觉系统为该问题提供了一个有希望的解决方案。在这里,我们提出并演示了一种原型神经形态视觉系统,该系统通过将视网膜传感器与忆阻交叉开关联网。我们使用具有栅极可调光响应的 WSe 2 /h-BN/Al 2 O 3 范德华异质结构来制造视网膜传感器,以紧密模拟人类视网膜同时感测和处理图像的能力。然后,我们将传感器与大规模 Pt/Ta/HfO 2 /Ta 单晶体管单电阻 (1T1R) 忆阻交叉开关联网,该交叉开关的作用类似于人脑中的视觉皮层。实现的神经形态视觉系统可以快速识别字母和跟踪物体,表明在完全模拟状态下具有图像感测、处理和识别的能力。我们的工作表明,这种神经形态视觉系统可能会为未来的视觉感知应用开辟前所未有的机会。
