y 1.0输出功率因数(PF):提供更多可用的功率,使您能够连接更多的设备节省金钱和空间。y功率因数校正:防止噪声,谐波和失真转移到连接的载荷或送回实用程序中。y高级警告状态:接收早期的听觉和视觉警报,警告您系统状态,以提醒您输入电压,输出过载,电池低或更换电池。y宽输入电压范围:通过允许UPS在传输到电池之前最大程度地利用实用功率来延长电池寿命。y扩展运行时:VRLA(2U):最多5个字符串(或5对外部电池柜)可为最大的运行时提供最大的运行时,最多可达67分钟 @满载,而143分钟则为143分钟。锂:最多8个字符串(或8对1U外部电池柜)在满载时的最大运行时间为94分钟,在一半负载下为188分钟。y高效率:在正常(在线)操作模式下运行高达93%,在ECO模式下运行最多99%。y闪电和电涌保护:Liebert®ITA2内部的瞬态电压抑制电路为连接的设备提供了额外的保护。
摘要:本文旨在促进专有技术的开发以及对技术应用过程所必需的航空航天概念研究中的集成技术的评估和选择。所要解决的问题在于缺乏模块化平台和低成本测试系统,无法进行卫星系统的实验开发和模拟。因此,与此相比,提出了 1U CubeSat 标准的可扩展模块化平台的提案作为主要结果。从可持续性概念出发提出的设计和特性描述过程有助于使用和开发低成本设备,最大限度地减少对环境的影响,进而切实可行地将其应用于促进哥伦比亚空间技术传播的团体和研究中心的活动中。可持续设计的方法、设计原则的定义和概念设计,通过应用质量功能部署方法 (qfd)、发明问题解决理论 (triz)、可制造性导向设计 (DfM)、可装配性 (DfA)、环境影响 (DfE)、可靠性 (DfR) 和安全性评估来实现,这些对于遵守 cds 中描述的 CubeSat 操作标准都至关重要。最后,提出了几种使用不同材料的低成本测试平台的构造模式,例如纸、abs、mdf 木材和铝的 3D 原型。它们都是以低成本设计和建造的小型卫星结构。这些设计使测试机载系统和组装和材料集成阻力成为可能,在实验室中用作振动试验台,供有兴趣促进空间技术发展的研究团体或公司使用。
摘要:随着立方体卫星执行复杂和先进任务的能力不断提高,它们正被考虑用于诸如星座之类的任务,这些任务需要很高的开发效率。从卫星接口的角度来看,通过实施灵活的模块化结构平台,可以最大限度地提高生产率,从而在集成和测试阶段轻松实现可重构性。因此,立方体卫星的结构设计在促进卫星集成过程中起着至关重要的作用。在大多数情况下,在主负载支撑结构和内部卫星子组件之间实施的机械接口通过增加或减少复杂性来影响卫星集成的速度和效率。大多数立方体卫星结构设计使用堆叠技术,使用堆叠杆/螺钉将 PCB 安装到主结构上。因此,内部子系统是相互连接的。观察到这种传统的接口方法增加了结构部件的数量,同时增加了集成过程中的复杂性。在这项研究中,基于插槽概念开发了灵活的 3U 和 1U 立方体卫星平台。这种创新的安装设计提供了一种将 PCB 安装到插槽中的简单方法。评估并验证了该概念在批量生产应用中的可行性。进行了计数和复杂性分析,以评估所提出的设计与传统类型的结构接口方法。评估表明,这一新概念显著提高了批量生产过程的效率。
sUAS CAPF 5U 问卷 姓名:_________________________ 等级:________________ CAPID:_______________ 单位:_________________________________________________ 日期:________________ 检查飞行员:_____________________ 等级:_________________ CAPID:_______________ 分数:_________ sUAS 类型/型号:___________________________________________ 使用任何可用的课程材料完成此开卷问卷。如果问题或问题的一部分不适用,请填写 N/A。检查飞行员将审查并评分问卷。最低及格分数为 80%。完成的问卷将存档在飞行员的飞行记录中。 1.) 未经豁免,sUAS 操作的最大高度(以英尺 AGL 为单位)是多少:2.) 根据 14CFR107,计划在 D 类空域运行的 sUAS 的远程 PIC,a.) 必须使用目视观察员 b.) 需要提交飞行计划 c.) 需要获得 ATC 授权 3.) 在操作无人机时,远程飞行员应考虑机翼上的载荷系数可能随时增加 a.) 重心向后移动至后重心限制。b.) 飞机进行直线平飞以外的机动。c.) 总重量减轻。4.) 在商业运营中使用小型 UA 时,谁负责向参与者介绍紧急程序?a.) FAA 主管检查员。b.) 首席目视观察员。c.) 远程 PIC。 5.) 根据 14 CFR 第 101、107 和 CA 部分
1医学实验室科学系,应用医学科学学院,国王阿卜杜勒齐兹大学,吉达,沙特阿拉伯2分子诊断实验室,国王阿卜杜勒齐兹大学医院,国王阿卜杜勒齐兹大学,沙特阿拉伯国王阿卜杜勒阿拉伯,阿拉伯人,mol。res。22(4):GMR19097于2023年8月30日收到2023年10月26日,于2023年12月26日发表,doi http://dx.doi.org/10.4238/gmr19097摘要。下一代测序(NGS)平台现在作为治疗前结肠癌患者的K-RAS突变的常规分析实施。NGS平台中使用的DNA是从结肠癌福尔马林固定的石蜡包裹(FFPE)块中提取的。在这项研究中,我们利用了20个FFPE结肠癌块。通常,优质的DNA样品包括紧凑的高分子量DNA。通过琼脂糖凝胶电泳检查提取的DNA的质量。由于自动分解和自发脱尿,或细菌污染和提取的DNA的自然机制,发现某些样品被高度退化,然后通过超声处理将其定期碎片。在这项研究中,进行了PCR来重建较大的DNA片段,而不是扩增DNA片段。无原始PCR依赖于PCR循环的两个段的自然力量来重建碎片的PCR,作者:变性DNA可以随机退火为其互补序列(退火)和TAQ聚合酶在3'端(扩展)扩展DNA。通过重复150个循环,产生较大的DNA片段而不是扩增DNA。碎片的DNA通过无底漆PCR重建150个周期。然而,每50个周期将TAQ聚合酶的1U添加到PCR反应中。为这项研究选择的样品被高度降解。样品的降解程度为
如果要满足载人任务的热失控要求,小型航天器电池组的质量和成本都过高。探索任务 1 (EM-1),也称为 Artemis 1,有 13 个次级小型航天器有效载荷。这些有效载荷中的许多都将超过 80WHr 能量阈值,并且必须遵守热失控标准 JSC 20793。所有 13 个有效载荷都属于 EM-1 次级有效载荷热失控豁免范围;但是,EM-2 预计不会授予此类豁免。此外,EM-2 次级小型航天器有效载荷的尺寸正在增大,预计电池组也会相应增大。高能量电池和低豁免概率表明大多数有效载荷将有望满足 JSC 20793 Rev. D - 载人航天器电池安全要求。但是,传统电池组技术的质量和成本充其量将是一个重大挑战——如果不是完全令人望而却步的话。马歇尔太空飞行中心 (MSFC) 与 KULR Technology Corp 合作,寻求创建一种先进的制造电池架构来解决该问题。该团队开发了一种原型 3D 打印外壳,该外壳带有网状过滤器、碳通风口和 KULR 专有的液体填充碳纤维包裹物。电池设计基于 18650 锂离子电池,可适应不同的外形尺寸。KULR 的被动传播阻力 (PPR) 设计之前已被证明在原型 1U CubeSat 电池组中有效,但仅用于测试设计的热特性。机械设计需要改进系统以满足发射到太空的振动要求。对真空的耐受性也需要调查和适度的设计更改。除了内部加强功能外,该项目的下一代原型还采用了 MSFC 开发的先进 3D 打印材料。原型包含 8 个电池,体积略大于 ½-U,但如果特定项目需要,该设计可以轻松适应更少的电池。与之前的先进技术相比,该解决方案的质量和成本显著降低。此外,该解决方案可以商业化为 COTS 选项,用于次级有效载荷和其他电池质量至关重要的应用。除了节省成本和重量外,这些设计还可以比使用传统机械加工部件构建的设计更快地进行调整、生产和组装。
;.r,e:ZOll Odobfl 201, f~ 0 ~o 0<:obet 2o:IO MAl fducollon l "'lt'l;:nlln11 lAI In StJo ,_gy 0w 0epa,lfn4tnl f_,lcal Us e of Al Prindp l •s to, Al S lfo .. gy he DoDM em c:, Memo lh e S:e,c, e lury of rectoM:d on v nctM:d on v nct, ~ , ,~. ~~ , ~~I The Deoutv Secrelarv ot Defense ,ecog 1f2ttt """"""Vollhe'l018 lf\t'IOvotiQ,, 8oon;l noe 0o0 la, n ,nlly l)ew,se reaffirm, the lhe impOtl tme& cl Oo agOi w11 ~DOi Alloch. OOOP11 lvenN overorc t,·~ OoO Al Elhic: ot P ,inc;pk>I new or>d ,.,, ,.,,g1no kicntlfiod one ot ib IN"• El lies Pd on~~~?~~ . Of ~e,r>oruil)je N , ram, on l lc [po iod in v,lng A l In O towflli ond non
保护D 1000 li-ion,D 1500 li-ion,d 2000 li-ion,d 3000 li-ion分类VFI SS 313 ACC。至IEC 62040-3 D 1000 li-ion D 1500 li-ion D 2000 li-ion D 3000 li-ion电源类型评级1000 VA 1500 VA 1500 VA 2000 VA 3000 VA 3000 VA 1000 W 1000 W 1500 W 1500 W 2000 W 3000 W 3000 W零件号零件号输入输入电压110-300 VAC(160-300 @100%)频率(自动选择)45-55 Hz / 54-66 Hz输入功率因数 /(THDI)0.99(THDI <5%)在标称负载(Max。)< / div> < / div>5 A 7 A 9 A 14 A UPS OUTPUT Rated output voltage (adjustable) 200 VAC / 208 VAC / 220 VAC / 230 VAC (default) / 240 VAC ± 1 % Frequency in battery / frequency converter mode 50 Hz / 60 Hz ±0.2 Hz Nominal output current (at 230 VAC) 4.3 A 6.5 A 8.7 A 13 A Transfer time at mains outage 0 ms Voltage waveform Pure Sine Wave, distortion THDv <1 % @线性负载和<4% @非线性负载超载响应(双转换模式)105 - 125%,分别为5分钟 / 125% / 125% - 150% - 30 s /> 150%的500毫秒Crest因子3:1短路响应逆变器限制了100ms电池类型Li-ion(LifePo4)内的电流(LIFEPO4),集成,热量互动,8-10年4月8日(8-10年)(8-10年)(8-10年)(8-10年)(8-10年)。 VDC电池电池管理SOC和SOH预测,多级保护,自动电池容量测试电池组(外部)最多4个单元,每分钟(内部电池)每次备份时间(内部电池)全部 /半加载18/35 12/25 10 15/25 10/20备份时间(外部电池)(外部电池)备份时间(外部电池)
自从十五世纪初的哲学家和思想家一直想知道太空带来的奥秘,例如它们的性质和扩展,使他们对天体力学,应用数学和自然科学的相关领域做出了巨大贡献。随着技术和计算进步提供的科学进步,已经开发了新的空间应用技术,开始了空间探索的时代。由于电信,空间观察卫星的进展以及通过图像进行土地监测,世界航空航天部门开始发展,并激励建立与部门相关的身体。如巴西的例子,引用了目前被提名INPE的Gocnae(国家太空活动委员会组织)(国家空间研究所)[3]的概念[3]。这一事件偏爱大学,以方形山脉的形式进入太空竞赛,卫星的初始测量为10 x 10 x 10 cm,质量为1,33 kg,其特征是该利基市场的卫星测量。因此,立方体在学习和接触不同程度的教育的学生中表现出了重要的重要性,以便在航空航天部门进行研究。[2,7,8]。作为项目开发的开端,文献综述和对项目最初充足性的传感器进行研究。这项工作的目的是卫星大学建设和仪器的步骤,涵盖编程区域,添加剂制造[4,5],电子,嵌入式系统和天体力学[1,6]。加速度计和陀螺仪分别提供线性加速度和角速度,磁力计和气压计分别提供指导(指南针)和大气压(高度计),而GPS受体则提供位置和速度信息。每个传感器的数据将通过Cubesat MicroController处理,该数据将通过射频发送器传输处理的数据。这些传感器的主要特征是低成本,较小的物理尺寸和低功耗,这是将电池用作主要能源的应用的重要因素。因此,立方体将能够测量通过GY-280传感器获得的温度,压力和高度。另外,由于使用GPS,陀螺仪和加速度计系统,其沿轨迹的位置描述沿轨迹进行,定位和空间方向。然后,GY-521提供的数据和µT单元中的磁场测量值开始了系统的整合,因此您可以尝试进行步骤,以便更好地利用时间,并离散涉及的步骤,从而促进项目每个阶段可能误差。
