Chiagozie Mbah 6 摘要 目的:本研究旨在增强射频 (RF) 能量收集的电压倍增器,重点是提高收集能量的效率。这一改进对于可持续能源应用和减少化石燃料造成的环境污染至关重要。 理论参考:射频能量收集技术正逐渐被认可为一种可行的可持续环境能量捕获方法,早期的研究主要集中在天线和电路设计上。尽管如此,能量收集的有效性仍然受到功率输出不足的限制。本研究在先前的研究基础上,直接比较了两种常用的电压倍增器,即 Cockcroft Walton 和 Dickson 倍增器,并将其应用于射频能量收集。 方法:使用 Multisim 对 Cockcroft Walton 和 Dickson 电压倍增器进行优化设计,并使用 MATLAB 分析其性能。比较是在两个频率范围内以 1V 的输入电压进行的:85 MHz – 110 MHz(FM 频段)和 1.8 GHz – 3.0 GHz(4G 频段)。记录了两个倍增器的输出电压,并在这些频带上进行了比较。结果与结论:在 FM 频带(85 MHz – 110 MHz)内输入电压为 1V 时,Dickson 电压倍增器的性能优于 Cockcroft Walton 倍增器,其输出电压为 11.1V,而 Dickson 为 6.6V。然而,在 4G 频带(1.8 GHz – 3.0 GHz)中,Cockcroft Walton 倍增器的效率更高,其最大输出电压为 5.2V,而 Dickson 为 4.1V。研究得出结论,Dickson 倍增器更适合从 FM 频带收集射频能量,而 Cockcroft Walton 倍增器更适合 4G 频带能量收集。研究意义:研究结果表明,不同的射频能量收集应用可能受益于不同的电压倍增器,具体取决于所涉及的频带。这可以指导未来旨在实现可持续能源解决方案的技术中更高效的射频能量收集电路的设计。原创性/价值:本研究直接比较了不同射频频率条件下的两个电压倍增器,为优化绿色能源应用的能量收集技术提供了宝贵的见解。研究结果有助于加深对特定射频频段高效电路设计的理解,有助于开发更有效的能量收集系统。关键词:电压倍增器、Cockcroft-Walton 电压倍增器、Dickson 电压倍增器、能量收集、射频。
摘要:由于热力学的局限性,电子的玻尔兹曼分布阻碍了晶体管晶体管的进一步减少功耗。然而,随着铁电材料的出现,预计将解决此问题。在此,我们基于CIPS/MOS 2 van der waals杂结型演示了或逻辑铁电位晶体管。利用铁电材料的电场放大,CIPS/MOS 2 VDW铁电晶体管在三个数量级上的平均亚阈值摇摆(SS)为52 mV/dec的平均下阈值(SS),最小SS SS SS SS SS SS SS SS SS SS SS SS/DEC的最低限度为BoltzMann限制,从而在室内温度下限制。双门控铁电位晶体管表现出出色或逻辑的操作,供应电压小于1V。结果表明,由于其在距离内造成的,陡峭的suppherope subthers thrope subphersholt swing and Powdertage and plow show thres thrope subshort swing and show thershold swing and show supshort swing and show powertapt and pow showtage and powertage and the cips/mos 2 vdw铁电晶体管具有很大的潜力。
摘要:射频能量收集 (RFEH) 是目前广受欢迎的一种可再生能源收集形式,因为许多无线电子设备可以通过 RFEH 协调其通信,尤其是在 CMOS 技术中。对于 RFEH,检测低功率环境 RF 信号的灵敏度是重中之重。通常采用 RFEH 输入端的升压机制来增强其灵敏度。然而,保持其灵敏度的带宽非常差。这项工作在 3 级交叉耦合差分驱动整流器 (CCDD) 中完全在片上实现了可调升压 (TVB) 机制。TVB 采用交错变压器架构设计,其中初级绕组实现到整流器,而次级绕组连接到 MOSFET 开关,用于调节网络的电感。 TVB 使整流器的灵敏度保持在 1V 直流输出电压下,在 3 至 6 GHz 的 5G 新无线电频率 (5GNR) 频段的宽带宽内最小偏差为 − 2 dBm。在 − 23 dBm 输入功率下,直流输出电压为 1 V,峰值 PCE 在 3 GHz 下为 83%。借助 TVB,可以在 1 V 灵敏度点处保持 50% 以上的 PCE。提出的 CCDD-TVB 机制使 CMOS RFEH 能够以最佳灵敏度、直流输出电压和效率运行于宽带应用。
触发器(FF)是数字系统设计中大量使用的基本存储组件,涉及流水线结构和由 FF 构建的模块。FF 占总功耗的很大一部分,并且占数字系统的芯片面积很大。因此需要低功耗和小面积的 FF 设计。本文中低功耗 17 – 真单相时钟 (TSPC) 推理方法在高级计划中得到了广泛应用。提出了一种45 nm CMOS触发器。所提出的TSPC FF的逻辑结构为主从型,其中主级由静态CMOS逻辑形成,而从级由静态CMOS逻辑和互补传输晶体管逻辑的混合组合形成。所提出的TSPC FF电路是完全静态的,因为在操作期间没有内部节点处于浮动状态,这实际上防止了泄漏功耗。所提出的TSPC FF是通过在面积和功耗方面优化17晶体管逻辑结构减少触发器(LRFF)而设计的,但不影响FF的功能。在DSCH和MICROWIND工具中,使用gpdk 45 nm技术库以1v的电源电压vdd和500mhz的时钟频率实现和模拟了三个FF,即基于传输门的触发器(TGFF)、LRFF和所提出的TSPC FF。
背景和目标:本文首次设计并介绍了一种基于电流镜和折叠级联拓扑组合的新型折叠镜 (FM) 跨阻放大器 (TIA) 结构。跨阻放大器级是接收器系统中最关键的构建块。这种新型拓扑基于电流镜拓扑和折叠级联拓扑的组合,采用有源元件设计。其理念是在输入节点使用电流镜拓扑。在所提出的电路中,与许多其他已报道的设计不同,信号电流(而不是电压)被放大直到到达输出节点。由于使用二极管连接的晶体管作为电流镜拓扑的一部分,所提出的 TIA 具有低输入电阻的优势,这有助于隔离主要输入电容。因此,以相当低的功耗实现了 5Gbps 的数据速率。此外,设计的电路仅使用了六个有源元件,占用的芯片面积很小,同时提供 40.6dBΩ 的跨阻抗增益、3.55GHz 频率带宽和 664nArms 输入参考噪声,并且仅消耗 315µW 功率和 1V 电源。结果证明了所提出的电路结构作为低功耗 TIA 级的正确性能。方法:所提出的拓扑基于电流镜拓扑和折叠级联拓扑的组合。使用 Hspice 软件中的 90nm CMOS 技术参数模拟了所提出的折叠镜 TIA 的电路性能。此外,对晶体管的宽度和长度尺寸进行了 200 次蒙特卡罗分析,以分析制造工艺。结果:所提出的 FM TIA 电路提供 40.6dBΩ 跨阻增益和 3.55GHz 频率带宽,同时使用 1V 电源仅消耗 315µW 功率。此外,由于分析通信应用中接收器电路中输出信号的质量至关重要,所提出的 FM TIA 对于 50µA 输入信号的眼图打开约 5mV,而对于 100µA 输入信号,眼图垂直打开约 10mV。因此,可以清楚地显示眼图的垂直和水平开口。此外,跨阻增益的蒙特卡罗分析呈现正态分布,平均值为 40.6dBΩ,标准差为 0.4dBΩ。此外,FM TIA 的输入电阻值在低频时等于 84.4Ω,在 -3dB 频率时达到 75Ω。通过对反馈网络对输入电阻的影响的分析,得出了在没有反馈网络的情况下,输入电阻可达1.4MΩ,由此可见反馈网络的存在对于实现宽带系统的重要性。结论:本文本文介绍了一种基于电流镜拓扑和折叠级联拓扑组合的跨阻放大器,该放大器可放大电流信号并将其转换为输出节点的电压。由于输入节点存在二极管连接的晶体管,因此 TIA 的输入电阻相对较小。此外,六个晶体管中有四个是 PMOS 晶体管,与 NMOS 晶体管相比,它们的热噪声较小。此外,由于前馈网络中未使用无源元件,因此所提出的折叠镜拓扑占用的片上面积相对较小。使用 90nm CMOS 技术参数的结果显示,跨阻增益为 40.6dBΩ,频率带宽为 3.55GHz,输入参考噪声为 664nArms,使用 1 伏电源时功耗仅为 315µW,这表明所提出的电路作为低功耗构建块的性能良好。
摘要:本文介绍并讨论了一种用于分集接收模块的低频带 (LB) 低噪声放大器 (LNA) 设计,该模块适用于多模蜂窝手机。LB LNA 覆盖 5 个不同频段,频率范围从 617 MHz 到 960 MHz,5 刀单掷 (5PST) 开关用于选择不同的频段,其中两个用于主频段,三个用于辅助频段。所提出的结构涵盖从 -12 到 18 dB 的增益模式,增益步长为 6 dB,每种增益模式的电流消耗都不同。为了在高增益模式下达到噪声系数 (NF) 规格,我们在本设计中采用了具有电感源退化结构的共源共栅 (CS)。为了实现 S 11 参数和电流消耗规格,高增益模式(18 dB、12 dB 和 6 dB)和低增益模式(0 dB、-6 dB 和 -12 dB)的内核和共源共栅晶体管已被分开。尽管如此,为了保持较小的面积并将相位不连续性保持在 ± 10 ◦ 以内,我们在两个内核之间共享了退化和负载电感器。为了补偿工艺、电压和温度 (PVT) 变化的性能,该结构采用了低压差 (LDO) 稳压器和极端电压补偿器。该设计在65nm RSB工艺设计套件中进行,电源电压为1V,以18dB和-12dB增益模式为例,其NF分别为1.2dB和16dB,电流消耗为10.8mA和1.2mA,输入三阶截取点(IIP3)分别为-6dBm和8dBm。
半导体行业集成电路和电源管理的发展迫使电子电路能够更高程度地集成到片上系统解决方案中。传统的低压差稳压器具有较大的外部电容器来补偿频率响应和瞬态变化。为了集成到片上系统应用中,必须移除外部电容器。对于 28nm CMOS 工艺技术,所提出的解决方案提供了一种快速调节路径,无需外部电容器即可补偿低压差稳压器的瞬态响应。该低压差稳压器无需外部电容,具有快速调节路径,供电电压为 1.8V,能够调节 1.2V、1.1V、1V、0.9V、0.8V 和 0.7V 的输出电压。从无外部电容的低压差稳压器的通用无补偿架构来看,在误差放大器中实现了一个值为 5pF 的内部米勒电容,目的是在系统中产生频率补偿并确保其交流稳定性。研究并实施了一种快速调节路径补偿方案,用于补偿负载电容相当于 1 pF 时最大负载电流变化为 1 mA 的瞬态响应。仿真结果表明,低压差稳压器在最先进的架构中具有竞争力,超越了一些架构,输出电压的正负瞬态变化值分别记录为 48 mV 和 49.8 mV,恢复时间为 0.5 µ s。随后进行的 PVT(工艺、电压、温度)极端情况模拟和蒙特卡罗分析表明,所设计的系统符合 ISO 26262 标准。提出了所提系统的布局设计,以供将来集成。
为了进一步避免声音噪声,该电路通过将跳周期模式期间的突发频率限制在 800 Hz 的最大值来防止开关频率 进入可听范围。这是通过一个定时器实现的,该定时器在安静的跳周期工作模式期间被激活。在该计时器计数结束 前,不允许打开开关周期。随着输出功率的降低,开关频率降低,一旦达到 25 kHz ,即达到进入入阈值并进入跳 周期模式。关闭开关管,停止开关周期,一旦开关停止, FB 将上升。一旦 FB 越过跳周期退出阈值(这时仍然为 跳周期工作模式),则打开驱动脉冲。此时,一个 1.25 ms 的计时器 tquiet 与一个计数到 3 的计数器一起启动。下 次 FB 电压降至跳入阈值以下时,只要计数到 3 个驱动脉冲,驱动脉冲就会在当前脉冲结束时停止(至少打开 3 个 开关脉冲)。在计时器计时结束之前不允许再次启动,即使先达到跳周期的退出阈值。需要注意的是,计时器不会 强制下一个循环开始,如果在计时器计时结束时未达到跳周期的退出阈值,则驱动脉冲将等待 FB 达到跳周期退出 阈值。这意味着在空载期间,每次开关至少会有 3 个驱动脉冲,脉冲串间隔周期可能远长于 1.25 ms 。该工作模式 有助于提高空载条件下的效率。 FB 电压必须升高超过 1 V ,才退出跳周期模式。如果在 tquiet 计时结束前 FB 电压 大于 1V ,则驱动脉冲将立即恢复,即控制器不会等待计时器结束。图 4 提供了一个安静跳周期工作原理的示例。
威廉姆森指挥他的飞机飞行员试图通过丛林树冠下降到 250 英尺高的漏斗中,以撤离伤员和死者。虽然没有其他直升机能够通过这条通道,但还是成功着陆了。落地后,威廉姆森将军冒着敌方炮火,穿梭在前线部队中,帮助和鼓励伤员和守军。他派出自己的飞机协助撤离战场上的伤员,选择留在战区,亲自指挥剩余部队的进一步战术部署。他充满活力的领导能力、不屈不挠的勇气和决心为撤离直升机的降落铺平了道路,成功撤离了大量伤员和死者,并鼓舞了剩余部队取得胜利所需的精神。威廉森将军在战场上的非凡英雄主义和他对每个士兵的深切关怀符合美国陆军的最高传统,并给他本人和国家的武装部队带来了巨大的荣誉。II 杰出服务奖章。1.根据总统指示,按照 7 月 9 日批准的国会法案的规定,卫生和公共服务部授予杰出服务奖章,以表彰其在肩负重任的职位上做出的异常功绩和杰出服务:阿福阿 R. 菲奇中将,美国陆军。1955 年 4 月至 1966 年 5 月。马丁 L. 格林上校,美国陆军炮兵。1962 年 10 月至 1966 年 5 月。保罗 D. 普利普斯准将,美国陆军。1964 年 6 月至 1966 年 5 月。贝尔利 E. 鲍威尔少将,美国陆军。 1964 年 3 月至 1966 年 3 月。(该奖项取代了授予鲍威尔将军的功绩勋章(第一橡树叶簇),以表彰他在 1964 年 3 月至 1966 年 3 月期间的杰出服务,该勋章已于
1. Rossi S,编辑。《澳大利亚药物手册》。阿德莱德,南澳大利亚:澳大利亚药物手册;2022 年。2. 临床药理学 [互联网]。Elsvier BV。2022 年 [2022 年 7 月 18 日引用]。可从以下网址获取:http://www.clinicalpharmacology-ip.com.pklibresources.health.wa.gov.au/default.aspx。3. MIMS 澳大利亚。MIMS 在线 [完整产品信息]。新南威尔士州圣伦纳兹:CMP Medica Australia。;2022 年。第 1v 页。(各种分页)。4. 澳大利亚皇家全科医师学院、澳大利亚药学会、澳大利亚临床和实验药理学家和毒理学家协会。AMH:儿童用药指南。阿德莱德:澳大利亚药物手册有限公司;2022 年。5. 抗生素写作小组。治疗指南 - 抗生素。西墨尔本:治疗指南有限公司;2022 年。网址:https://tgldcdp-tg-org- au.pklibresources.health.wa.gov.au/etgAccess。6. IBM Micromedex [互联网]。Truven Health Analytics。2022 年 [2022 年 7 月 18 日引用]。网址:http://www-micromedexsolutions- com.pklibresources.health.wa.gov.au/micromedex2/librarian。7. 儿科药物信息 [互联网]。Lexicomp。2022 年 [2022 年 7 月 13 日引用]。8. Symons K. Ermer J.(编辑)。澳大利亚注射药物手册。科林伍德:澳大利亚医院药剂师协会;2022 年。9. 儿科注射药物。马里兰州:美国卫生系统药剂师协会; 2020。10. Lichliter RL、Tremewan LE、Shonka NM、Mehnert JE、Brennan L、Thrasher JM 等人。两种采血方法在儿科患者体内测定的治疗性抗生素血清浓度:一项比较效果试验。J Spec Pediatr Nurs。2018;23(2):e12212。11. PathWest。PathWest - 测试目录 Perth2021 [引用于 2021 年。可从以下网址获取:http://www.pathwest.com.au/testdirectory/。12. 儿科处方委员会。BNF for Children:2022 年。伦敦:BMJ Group Pharmaceutical Press;2022 年。
