本文介绍了三体旋转系统的研究和设计,该系统将用作研究不同重力变量(包括模拟月球和火星重力条件)下系统功能和人体生理学的前兆/试验台。试验台将是收集人造重力对航天器系统和人体生理学影响数据的必要步骤,有助于优化月球和火星表面栖息地以及人造重力航天器的设计方案。这将是低地球轨道可变重力研究平台开发的第一阶段,用于长期研究可变重力梯度和旋转引起的重力模拟的影响。确保宇航员在长期火星任务期间的安全以及他们返回后的恢复是任务成功的关键要求。因此,在执行任务之前必须充分了解部分重力对生理和心理能力的长期影响,并且需要一个研究平台来研究部分重力对人类和技术系统的影响。在低地球轨道 (LEO) 绕地球运行的可变重力研究平台可以解决这一知识空白。低地球轨道是此类设施的理想地点,因为低地球轨道距离地球表面很近,而且可以利用那里现有的基础设施和商业活动。此类平台的开发需要分阶段进行。本文介绍了第一阶段。它是研究平台的试验台,由两艘定制的龙飞船组成,龙飞船停靠在中央枢纽,然后停靠在国际空间站的 Zvezda 舱。该提案旨在利用现成的元素来降低开发成本和时间,使我们能够使用当今的技术在“明天”进行测试。为了执行操作,试验台将脱离对接,撤退到国际空间站后方 2000 米处,并通过启动增强推进器开始旋转。然后,载人龙飞船将系绳到所需的旋转半径以开始测试操作。完成后,试验台将停止旋转,收回系绳并重新对接国际空间站。该序列将根据需要重复。本文还介绍了测试平台的测试目标、优势、劣势、机遇和威胁的分析、测试平台组成部分的设计开发和选择标准、操作概念和与测试平台相关的可能风险及其各自的缓解措施。
摘要 高分相机(GFXJ)是我国第一款自主研发的机载三线阵CCD相机,设计飞行高度2000m时,对地面三维点的GSD为8cm、平面精度为0.5m、高程精度为0.28m,满足我国1:1000比例尺测绘要求。但GFXJ原有的直接定位精度在平面方向约为4m,高程方向约为6m。为满足地面三维点精度要求,提高GFXJ直接定位精度,本文对GFXJ几何定标进行了深入研究。本次几何标定主要包括两部分:GNSS杆臂与IMU杆轴失准标定、相机镜头与CCD线畸变标定。首先,简单介绍GFXJ相机的成像特性。然后,建立GFXJ相机的GNSS杆臂与IMU杆轴失准标定模型。接下来,建立基于CCD视角的GFXJ镜头与CCD线畸变分段自标定模型。随后,提出迭代两步标定方案进行几何标定。最后,利用在黑龙江省松山遥感综合场和鹤岗地区获取的多个飞行区段进行实验。通过标定实验,获得了GNSS杆臂和IMU视轴失准的几何标定值。为前向、下视和后向线阵独立生成了可靠的CAM文件。实验表明,提出的GNSS杆臂和IMU视轴失准标定模型和分段自标定模型对GFXJ相机具有良好的适用性和有效性。提出的两步标定方案可以显著提高GFXJ相机的几何定位精度。GFXJ原始直接地理定位精度在平面方向约为4 m,在高程方向约为6 m。平面精度约为0.2 m,高程精度小于0.28 m。此外,本文建立的定标模型及定标方案可为其他机载线阵CCD相机的定标研究提供参考。利用GNSS杠杆臂和IMU视轴失准校准值以及CAM文件,GFXJ相机的定位精度可以在仅使用几个地面控制点进行空中三角测量后满足3D点精度要求和2000 m飞行高度1:1000的测绘精度要求。
