◼Chapinal等人,2011年; Huzzey等,2011; Ospina等,2010a,2010c; Duffield等,2009; Leblanc等,2005
情况 C“会计”:对所分析系统进行纯描述性会计/记录(例如产品、需求满足、部门、国家等)过去、现在或预测的未来,并且不暗示可能对其他系统产生额外影响的决策背景。需要区分两种子情况:在情况 C1(“会计,具有系统外部交互”)中,与其他系统的现有交互包含在 LCI 模型中(例如考虑回收效益或避免生产副产品)。请注意,这些“交互”仅指与其他系统的现有交互。这与情况 A 和 B 下假设发生的额外后果形成对比,这些后果被认为是由所分析的决策引起的。情况 C2 孤立地考虑了所分析的系统,即不考虑与其他系统的相互作用,但回收和共同生产的情况在系统模型内部得到解决(通过分配)(JRC 2010a)
航空业中有很多意外事件的例子,很多时候,飞行员没有对事件做出适当的反应,从而发生事故。在一个案例中,一架比奇 95-B55 的飞行员对佐治亚州拉格兰奇一条交叉跑道上的牵引机和滑翔机感到惊讶,他做出了过度的控制输入反应。这导致随后的空气动力失速、失控和地面撞击,机上所有人员遇难(NTSB,2015 年)。不幸的是,牵引机和滑翔机飞行员都报告说,比奇飞行员的行动没有必要防止可察觉的碰撞。还有很多其他事故/事件是由意外事件引起的,例如全美航空 1016 号航班、科尔根 3407 号航班和瑞士航空 111 号航班 (NTSB,1995 年;NTSB,2010a;TSB,1998 年)。这些事件让业界了解到机组人员在压力和不确定性下权衡调整计划和程序时面临的困难,以及我们整个行业如何让机组人员准备不足以应对这些挑战 (Dekker,2001 年)。
航空业中有许多意外事件的例子,而且很多时候,飞行员没有对事件做出适当的反应,从而发生了事故。在一个案例中,一架比奇 95-B55 的飞行员对佐治亚州拉格兰奇交叉跑道上的牵引机和滑翔机感到惊讶,他做出了过度的控制输入反应。这导致随后的空气动力失速、失控和地面撞击,机上所有人员丧生(NTSB,2015 年)。不幸的是,牵引机和滑翔机飞行员都报告说,比奇飞行员的行动没有必要防止可察觉到的碰撞。由于意外事件而发生的事故还有很多,例如全美航空 1016 号航班、科尔根 3407 号航班和瑞士航空 111 号航班(NTSB,1995 年;NTSB,2010a;TSB,1998 年)。这些事件让业界了解到机组人员在压力和不确定性下调整计划和程序时所面临的困难,以及我们的整个行业如何让机组人员做好充分准备来应对这些挑战 (Dekker, 2001)。
航空业中有许多意外事件的例子,而且很多时候,飞行员没有对事件做出适当的反应,从而发生了事故。在一个案例中,一架比奇 95-B55 的飞行员对佐治亚州拉格兰奇交叉跑道上的牵引机和滑翔机感到惊讶,他做出了过度的控制输入反应。这导致随后的空气动力失速、失控和地面撞击,机上所有人员丧生(NTSB,2015 年)。不幸的是,牵引机和滑翔机飞行员都报告说,比奇飞行员的行动没有必要防止可察觉到的碰撞。由于意外事件而发生的事故还有很多,例如全美航空 1016 号航班、科尔根 3407 号航班和瑞士航空 111 号航班(NTSB,1995 年;NTSB,2010a;TSB,1998 年)。这些事件让业界了解到机组人员在压力和不确定性下调整计划和程序时所面临的困难,以及我们的整个行业如何让机组人员做好充分准备来应对这些挑战 (Dekker, 2001)。
1 有关本研究项目方法的详细讨论,包括标签背后的逻辑,请参阅 Williamson 和 Wright (2010a,b)(简而言之,许多我们称之为新货币主义者的人认为旧货币主义著作中的某些东西有吸引力,但不是全部,并对旧凯恩斯主义或新凯恩斯主义方法持怀疑态度)。有关较新的调查,请参阅 Lagos 等人(2017)或 Nosal 和 Rocheteau(2017);有关具有类似精神的早期研究,请参阅 Kareken 和 Wallace (1980)。另外,为避免混淆,请注意新货币主义经济学不同于最近成为新闻的现代货币理论。事实上,这两者在许多方面截然相反 — — 例如,前者力求理论严谨,而且相当技术性,而后者似乎更多地基于直觉和对某些我们难以证明的政策的偏好。尤其是新货币主义者不主张政府通过印钞来向我们提供大量商品和服务,主要是因为我们不认同他们印钞不会引起通货膨胀的信念,而这一信念并没有理论或历史数据的支持。
图 8.1 显示了灵长类动物大脑中的味觉和相关嗅觉、体感和视觉通路的示意图,图 8.2 显示了它们在大脑中的位置。灵长类动物的神经生理学研究为理解人类的味觉、嗅觉和风味处理和神经成像提供了基础,因为对单个神经元的调节的研究提供了关于这些刺激如何在不同大脑区域中编码的基本信息,使用稀疏分布的表示,其中每个神经元的调节方式都不同于其他神经元(Kadohisa 等人,2005 年;Rolls,2008a、2015a、2016a、2021a;Rolls 等人,2010a;Rolls 和 Treves,2011 年)。对非人类灵长类动物的研究尤其相关( Rolls, 2014a , 2015b , 2016b , 2021a ),因为灵长类动物的味觉通路通过丘脑到达味觉皮层,而啮齿动物的脑桥味觉区与皮层下有直接连接( Small and Scott, 2009 ; Rolls, 2016b , 2021a );在啮齿动物中,饱腹感的影响位于孤束核的外周( Rolls and Scott, 2003 ; Scott and Small, 2009 ; Rolls, 2016b );啮齿类动物没有灵长类动物的主要部分,包括人类的眶额皮质,颗粒状部分(Wise,2008;Rolls,2014a、2019b、2021a)(见图 8.3)。这使得啮齿类动物无法成为人类和其他灵长类动物大脑中味觉、嗅觉和风味处理的糟糕模型(Rolls,2016c、2021a)。
胎儿编程(也称为发育编程)的概念最初是使用人类流行病学数据假设的,其中宫内环境刺激导致荷兰饥荒期间营养不良母亲所生的孩子的长期发育、生长和疾病易感性发生改变(Barker 等人,1993 年)。最近,有关胎儿编程对家畜的影响的文献已被回顾(Funston 等人,2010a;Ford 和 Long,2012 年)。许多因素影响牲畜的营养需求,包括品种、季节和生理功能(NRC,2000 年)。胎儿编程反应可能由负面的营养环境引起,这可能是由以下原因引起的:1) 饲养年轻的母畜,它们与快速生长的胎儿系统竞争营养;2) 多胎或大窝发生率增加;3) 选择增加产奶量,这会与胎儿和胎盘生长增加的能量需求竞争营养;或 4) 在高温环境下饲养牲畜,并在牧场条件差的时期怀孕(Wu 等人,2006 年;Reynolds 等人,2010 年)。研究报告称,妊娠期间母体营养不良会导致新生儿死亡率增加、肠道和呼吸功能障碍、代谢紊乱、出生后生长率下降以及肉质下降(Wu 等人,2006 年)。在妊娠期间对奶牛营养进行适当的管理可以提高后代的表现和健康。
自1980年代以来,发展中和发达经济体都增加了其可再生能源使用和生产。可再生能源的出现有四个方面。首先是技术进步,它降低了可再生能源设施的投资成本(Apergis and Payne,2010a; Apergis and Payne,2010b; Luqmanahmad和Bakhsh,2019年)。第二个方面与政府法规有关,该法规为可再生能源投资提供了支持政策的影响,例如大多数政府为绿色能源建立信贷减轻和税收减免,而绿色能源又会提高了证书和投资组合标准,并在可再生能源投资(Apergis和Payne,2012年; Asiedu et al,2021年)。第三点与气候变化问题有关。有人认为,增加的可再生能源使用减少了二氧化碳的排放,从而使可再生能源减轻了气候变化的有害影响(Bowden and Payne,2009; Payne,2009年,Ali,2021年)。最后,化石燃料价格的上涨鼓励了使用可再生能源(Gozgor,2018年)。考虑到这四个因素,可再生能源有可能带来长期的经济增长。最近,由于目前面临的全球经济面临的政策不确定性和不稳定性,可再生能源在带来长期经济增长方面的作用似乎受到了挑战。这种新兴的不确定性/不稳定性之一是经济政策不确定性(EPU)。EPU是与政府政策方向变化相关的政策不确定性(例如,货币或最终政策变更,税收法规等。),这倾向于在解决这种不确定性之前,会导致个人和企业的支出和投资延误。与能源消耗有关的政策变化和不确定性已被认为会影响有关国家的整体经济增长(Aizenman and Marion,1993; Tiwari,2011; Gulen and Ion,2016)。例如,不确定性
(Andarawis-Puri等,2015; Thomopoulos等,2015; Millar等,2021; Pearce等,2021)。恢复受伤肌腱的正常结构在运动医学中构成了重大挑战。肌腱衍生的干细胞(TDSC)是肌腱组织中发现的一种间充质干细胞。严格来说,由于其生物异质性,TDSC不能将其分类为常规干细胞。考虑到它们分化为有限数量的特定细胞谱系的能力,将它们描述为“茎/祖细胞”细胞更为准确。此外,它们具有某些干细胞特征,例如克隆性,高增殖率和自我更新能力(Bi等,2007)。我们总结了补充表S1中TDSCS研究中报告的细胞培养方法。简而言之,培养和隔离肌腱干细胞的方法如下:在无菌条件下,肌腱组织在37°C下用胶原酶(通常是I型或II型,通常为I型或II型,浓度约为0.1% - 3%),持续几个小时,以持续几个小时,以隔夜隔断以分离细胞。然后在特定的培养基(例如低葡萄糖DMEM)中收集并培养细胞,并在5%CO 2的环境中添加10% - 20%的血清,并在37°C下保持在37°C,并以适当的时间间隔进行,以维持细胞的耐用性。tdsc的特征是存在诸如CD44,CD146,CD105和CD90之类的标记,这是间充质干细胞的典型特征(Zhang和Wang,2010a; Lee等,2018)。由于其独特的细胞微环境,与骨髓衍生的间充质干细胞相比,TDSC具有更大的产生肌腱和关节组织的能力(BMSC)(Tan等,2012)。当前对TDSC的细胞来源主要是:大鼠,小鼠,兔子和人类;研究的少量TDSC来自马,猪。主要研究重点是:治疗靶标和药物作用,疾病机制,组织工程和细胞特性。(补充表S1)肌腱损伤后,肌腱完整性的成功恢复涉及三个阶段:炎症阶段,细胞增殖阶段和细胞外基质(ECM)重建阶段。在炎症阶段,它涉及炎症细胞的内部效果,炎症因子的分泌以及TDSC的募集和激活(Vinhas等,2018; Ackerman等,2021)。细胞增殖阶段的特征是新肌腱细胞的产生,而ECM重建阶段涉及新的ECM和肌腱结构的形成。TDSC通过将ECM分泌给肌腱并区分为肌腱细胞,在肌腱修复中起着至关重要的作用(Zhang等,2019a)。使用适当的技术激活内源性肌腱干细胞或移植TDSC已成为促进肌腱损伤修复的创新方法(Lee等,2015)。因此,TDSC具有增强肌腱和肌腱骨连接的愈合的重要潜力(Chen等,2013)。TDSC在骨科研究中的重要性导致了近年来的大量研究(Leong等,2020)。但是,大多数研究都集中在TDSCS研究的特定方面,从而导致对该领域文献的全面分析。特定的文章声称采用文献计量方法来研究TDSC(Long等,2022);但是,其文献搜索内容不准确。尽管TDSC的发现可以追溯到2003年,但该研究的选定文献包括大量出版物
