T2DM,因为它们在调节血糖水平方面具有显著的功效,而且不会增加低血糖发作或体重增加的风险( Drucker 和 Nauck,2006;Nauck,2016)。此外,各种大规模心血管结果试验 (CVOT) 的良好结果表明,GLP-1RA 可以减轻心血管风险较高的 T2DM 患者发生重大不良心血管事件 (MACE) 的风险( Marso et al., 2016a;Marso et al., 2016b;Hernandez et al., 2018;Pfeffer et al., 2015;Holman et al., 2017;Husain et al., 2019;Gerstein et al., 2019)。由于这些有利的特性,GLP-1RA 已获得权威指南的认可( Marx 等人,2023 年;2024 年),成为 2 型糖尿病患者的重要治疗选择,尤其是那些已有动脉粥样硬化性心血管疾病或心血管风险较高的患者。然而,多年来,人们一直担心 GLP-1 RA 对胰腺的影响。根据观察数据,2011 年的一份报告强调,使用肠促胰岛素治疗的患者患胰腺炎和胰腺癌的风险增加( Elashoff 等人,2011 年),促使美国食品药品监督管理局 (FDA) 就 GLP-1 RA 对胰腺的安全性发出警告( Administration,2013 年)。病例报告回顾(Franks 等人,2012 年)进一步加剧了人们对 GLP-1RA 对胰腺的潜在不良影响的担忧,导致胰腺酶升高和 AP。一项大型随机对照试验的荟萃分析研究了基于肠促胰岛素的疗法与 AP 之间的关联,显示与传统疗法相比,使用这些药物时发生 AP 的可能性高 82%(95% CI,1.17 – 2.82)(Roshanov 和 Dennis,2015 年)。虽然最近发表的几项 CVOT 荟萃分析表明,GLP-1RA 与胰腺炎之间没有这种关联(Singh 等人,2020 年;Cao 等人,2020 年)。尽管如此,此类研究也存在重大缺陷,包括平均随访时间相对较短(RCT 中不到 2 年)、患者队列选择不当以及样本量有限。在本研究中,我们回顾了已发表的文献,并分析了美国食品药品管理局不良事件报告系统 (FAERS) 数据,以调查 GLP-1 RA 治疗中 AP 的发生率。我们的目标是提供 GLP-1 RA 诱发的 AP 的全面临床描述,并确定现实环境中 AP 和 GLP-1 RA 之间存在安全信号。
显着对象检测(SOD)旨在识别引起人类注意力的图像中最重要的区域。这些地区通常包括汽车,狗和人等物体。在图1中,在视觉上表示显着的对象检测后的输入和输出图像。它旨在模仿人类的关注,以关注现场的引人注目。识别图像中的显着区域可以促进后续的高级视觉任务,提高效率和资源管理并提高绩效(Gupta等,2020)。因此,SOD可以帮助过滤不相关的背景,并且草皮在计算机视觉应用中起着重要的预处理作用,为这些应用提供了重要的基本处理,例如细分(Donoser等,2009; Qin等,2014; noh et al。 Borji和Itti,2019年; Akila等人,2021年,2021年;现有的SOD方法可以大致分为两个类:1)常规方法; 2)基于深度学习的方法,如图2所示。传统方法利用低级特征和一些启发式方法来检测包含基于局部对比的基于扩散的贝叶斯方法,先验和经典监督的显着对象。此外,基于深度学习的方法可以帮助提取全面的深层语义特征以提高性能。可以进一步分类为完全监督的学习(Wang等,2015a; Lee等,2016a; Kim and Pavlovic,2016; He et al。,2017a; Hou等,2017; Shelhamer等,2017; Shelhamer et al。,2017; Su等,2019; Su等人,2019年)和弱监督的学习(Zhao Al Al Al Al Al。 Al。,2018年,2018年; Zhang等人,2020a;本文将根据两个
蛛网膜,尤其是蜘蛛,在大多数生态系统中都充满了丰富(Blamires等,2007; Oxbrough and Ziesche,2013; Henneken et al。,2022; Agnarsson,2023; 2023; Fonseca-Fonseca-Fornesca-forreira等,2023)。蛛网膜(例如蜘蛛,蝎子和螨虫)创建和/或分泌一系列生物材料,包括丝绸,胶水,胶粘剂,粘合剂,纳米纤维,毒液和其他毒素,以及用于形成感觉系统,盔甲,身体色彩/发光和位置的感官系统,kuntememotion(Kuntner,2022),用于形成感觉系统研究了这些类型的蛛网分泌产品的进化和生态方面的研究已经确定,扩展的表型特征使蛛网动物具有巨大的利基灵活性(Agnarsson等,2010; Blamires et al。 Al。,2018年,Viera等人,2019年; Henneken等,2022年; 尽管如此,促进这种功能的遗传特征和表达模式在很大程度上仍未得到探索。 蜘蛛很容易通过将线程放到收集平台上,或者通过麻醉和启动机制来建立网站和/或生产丝绸(Blamires等,2012a; Blamires等,2012b; Blamires et al。 2018; Lacava等人,2018年; 遗传和其他实验的最新进展(参见Sane和McHenry,2009; Craig et al。,2019; Craig et al。,2022; Blamires等,2023a)和计算(例如>研究了这些类型的蛛网分泌产品的进化和生态方面的研究已经确定,扩展的表型特征使蛛网动物具有巨大的利基灵活性(Agnarsson等,2010; Blamires et al。 Al。,2018年,Viera等人,2019年; Henneken等,2022年;尽管如此,促进这种功能的遗传特征和表达模式在很大程度上仍未得到探索。蜘蛛很容易通过将线程放到收集平台上,或者通过麻醉和启动机制来建立网站和/或生产丝绸(Blamires等,2012a; Blamires等,2012b; Blamires et al。 2018; Lacava等人,2018年;遗传和其他实验的最新进展(参见Sane和McHenry,2009; Craig et al。,2019; Craig et al。,2022; Blamires等,2023a)和计算(例如BLAMIRES和卖家,2019年; Craig等,2020; von Reumont等人,因此利用这一点的研究已经建立了有关蜘蛛网络和丝绸结构和功能变异性的强大背景知识(Vollrath和Porter,2006a; Kluge等,2008; Porter and Vollrath,; Porter and Vollrath,2009; Blamires,2010; Blamires et al。,2016b; Blamires; Blamires,2022222222222222222222222222.BlamIr。The genetic expression patterns for certain components of speci fi c silks have now been sequenced for selected species of spiders ( Babb et al., 2017 ; Garb et al., 2019 ; Kono et al., 2019 ), and a database of genetic and molecular structures and bulk fi bre functions for the major ampullate (dragline) silks of over 1000+ spider species has been compiled ( Arakawa et Al。,2022)。Nevertheless, such a strong body of knowledge does not exist for the other arachnid biomaterials (but see Lo ́ pez-Cabrera et al., 2020 ; Lozano-Pe ́ rez et al., 2020 , and Macha ł owski et al., 2020 for detailed reviews on cuticular structural materials, scorpion fl uorescent molecules, and mite silks).在蜘蛛丝上的积累工作意味着我们现在了解环境因素可以影响差异蛋白的遗传机制(在蜘蛛中,这些被称为蜘蛛蛋白,蜘蛛网的portmanteau)表达和生物材料产生,以及这些在表型和扩展的表型表达上的复杂复杂性。
葡萄树干疾病(GTD)给全球葡萄行业造成严重的经济损失(Fontaine等,2016b; Mondello等,2018a)。休闲药包括各种分类学上的真菌(Gramaje等,2018; Mondello等人,2018b),可以单独或一起影响植物。除了在叶子和簇上引起外部症状外,这些病原体还会引起内部木材变色。症状表达中不可预测的不连续性是这些疾病的特征(Mugnai等,1999)。GTD包括影响成年和年轻葡萄藤的一系列疾病。esca复合物,杂化磷酸盐死亡和尤特巴死亡被认为是成年葡萄藤的主要GTD(Claverie等,2020)。ESCA复合物与许多系统发育多样的真菌有关(Mugnai等,1999),包括ascomycota和basidiomycota。与ESCA相关的comycetes包括血管病原体phaeomoniella chlamydospora和phaeoacremonium最低限度(Syn。pm。Aleophilum)(u rbez-Torres等,2014)和其他phaeoacremonium。Wood-decay basidiomycetes include Fomitiporia mediterranea in Europe ( Moretti et al., 2021 ), and other pathogens belonging to the genera Fomitiporella, Fomitiporia, Inocutis, Inonotus, Stereum , and Phellinus in non-European countries ( Cloete et al., 2011 ; White et al., 2011 );这些真菌已从受感染的葡萄树干中分离出来,但是它们在疾病病因学中的作用尚未完全了解(Surico等,2006; Bertsch等,2013; Gramaje等,2018),并且在近年来被重新考虑。botryosphaeria dieback是由20种以上的杂化磷酶科引起的,包括dothidea N. Luteum,N。Rib,Eliplodia Serita和D. Mutila(Van Niekerk等,2004; Taylor等,2005;ÚRbez-Torres and Gubler,2009; Amponsah et al。 2013)。eutypa dieback是由eutypa lata和其他diatrypaceai特殊的特殊的(Trouillas and Gubler,2010; Luque等,2012)。这些病原体可以单独从受影响的木材中回收,也可以与其他真菌(例如PA)相结合。衣原体,下午。Aleophilum,Sphaeropsis Mariorum和Diaporthempelina(PéRros等,1999)。GTD症状是多缩的,包括马刺和手臂的死亡,木材的变色或内部条纹,扇形木材坏死和白色腐烂;由于植物可以同时受到多种真菌的影响,因此在其中GTD中,某些症状可能重叠(Gramaje等,2018)。木材变色和de骨是由多种结构和生理变化引起的,由真菌产生的纤维素分解和木质素溶酶,由于凝胶和牙龈由联邦木质部分泌的凝胶和牙龈引起的血管闭塞细胞或木质部实质细胞的坏死,导致真菌毒素(Bertsch等,2013; Claverie等,2020)。所有这些变化都会导致木质部伏特定功能的木质部发生变化,从而导致水和养分运动(Mugnai等,1999; Sparapano等,2000; Andol和Andol et et al。,2011)。最近报道了(Mondello等,2018b),详细描述了与不同GTD的症状。叶子从未分离出GTD真菌(Bertsch等,2013),也显示了多种症状,也已经描述过这些症状(Mugnai等,1999;Amborabé等,2001; Mondello et al。,2018b);木材和木质部血管改变,真菌毒素和继发代谢物的沉积均有助于
社会。最重要的是,迄今为止,针对这一系列致残或限制生命的疾病,获得许可的治疗方法极其有限(Chinnery,2015;Viscomi 等人,2023)。线粒体疾病的治疗方法包括对症治疗以改善生活质量或延长寿命,以及基因治疗以减少异质体并治愈细胞生化缺陷。对症治疗包括操纵线粒体的细胞含量、通过雷帕霉素诱导线粒体周转、恢复 NAD + 水平、调节活性氧的产生和氧化应激等(Russell 等人,2020)。基因治疗包括直接编辑线粒体基因组、基因替代疗法(Silva-Pinheiro 等,2020;Ling 等,2021)和线粒体移植疗法(Green field 等,2017)。基因编辑技术作为一种潜在的治疗选择,在过去十年中已在核遗传疾病的治疗中得到广泛研究(Sharma 等,2015;Nelson 等,2016;De Ravin 等,2017;Zheng 等,2022),越来越多的临床试验正在进行中(Arabi 等,2022)。然而,由于缺乏有效的工具来操纵 mtDNA( Silva-Pinheiro 和 Minczuk,2022 年),其在由 mtDNA 突变引起的线粒体疾病中的意义受到阻碍,除非通过锌指融合( Minczuk et al., 2008; Gammage et al., 2014; Gammage et al., 2016a; Gammage et al., 2016b; Gammage et al., 2018b )或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)切割和消除有害的 mtDNA 拷贝。线粒体DNA碱基编辑技术目前已发展成为生物技术中最常用的编辑技术之一(Pereira et al., 2018),以及基于TALE系统的单体酶(Pereira et al., 2018)。近年来,基于TALE的线粒体DNA碱基编辑工具陆续被引入,第一种是DddA衍生的胞嘧啶碱基编辑器(DdCBE)(Mok et al., 2020),它为按预期操纵线粒体DNA打开了大门。DddA系统来源于伯克霍尔德菌,DdCBE由两半无毒的TALE融合分裂DddA(DddA-N和DddA-C)组成,通过将这两半分裂的DddA重新组装成功能性脱氨酶,催化间隔区域内的胞嘧啶脱氨。目前,DdCBE 已成功应用于植物 (Kang et al., 2021)、哺乳动物细胞 (Mok et al., 2020)、斑马鱼 (Guo et al., 2021)、小鼠 (Lee et al., 2021; Lee et al., 2022a; Guo et al., 2022)、大鼠 (Qi et al., 2021) 甚至人类生殖细胞 (Wei et al., 2022a; Chen et al., 2022) 的线粒体 DNA 编辑。在我们的实验室中,它还已成功用于小鼠早期卵泡阶段的有效生殖系线粒体 DNA 编辑(已提交数据)。不幸的是,它在挽救线粒体疾病方面的应用极其罕见,无论是用于治疗研究(Silva-Pinheiro 等人,2022 年)还是用于临床试验(Chen 和 Yu-Wai-Man,2022 )。众所周知,潜在基因编辑结果的可预测性对于基因编辑技术在临床上用于基因治疗至关重要。为此,已经进行了大量的工作来了解CRISPR系统在核基因组编辑中对不同靶标的编辑规则,并且已经证明对于每个被CRISPR/Cas9编辑的原型间隔物来说,其结果是完全可预测的(van Overbeek et al., 2016 ; Shen et al., 2018 ; Shou et al., 2018 ; Allen et al., 2019 ; Chakrabarti et al., 2019 ; Chen et al., 2019 ; Long, 2019 ; Shi et al., 2019 ),这使我们能够提前知道每种策略在临床上应用的潜在结果。然而,对于线粒体基因组,由于缺乏 DNA 修复,CRISPR/Cas9 尚未参与 mtDNA 编辑
