3.4 FAT10 and NUB1L activate the 26S proteasome independently of the presence of USP14 .............................................................................................................................................. 64
DNA损伤反应(DDR)对于在挑战性环境中维持基因组完整性至关重要。DDR的调节机制在酵母和人类中已经建立了良好。然而,越来越多的证据支持这样的观念,即植物似乎采用了不同的信号通路,而这些信号通路基本上是未知的。在这里,我们报告了拟南芥(拟南芥)在DDR中与SNC1的修饰符,4相关的复合体亚基5A(MAC5A)的作用。MAC5A突变体中缺乏MAC5A会导致甲基甲磺酸甲酯(MMS),一种DNA损伤诱导剂。与该观察结果一致,MAC5A可以调节DDR基因的替代剪接,以保持对遗传毒性应激的适当反应。有趣的是,MAC5A与26S蛋白酶体(26SP)相互作用,并且其蛋白酶体活动是必需的。MAC核心亚基也参与了MMS诱导的DDR。此外,我们发现MAC5A,MAC核心亚基和26SP可能会协作以通过DDR进行高端诱导的增长抑制作用。总的来说,我们的发现揭示了MAC在MMS诱导的DDR中的关键作用在植物的生长和应激适应性中。
减轻疟疾和相关死亡的负担受到了疟疾寄生虫能够发展对市场上所有可用疗法的抵抗力的能力的阻碍(Antony和Parija,2016年)。因此,了解寄生虫获得对抗疟药的耐药性的机制对于未来替代有效治疗的发展至关重要。如今,阿耳震蛋白及其衍生物(Arts)是推荐的治疗方法,以及长期伴侣,形成基于青蒿素的联合疗法(ACTS)。artemisin抗性,主要由环阶段存活测定法(RSA)定义,经常与K13蛋白中的突变有关,而K13蛋白不调节蛋白酶体的活性(Wicht等,2020)。然而,使用蛋白酶体抑制剂(例如环氧素)会增加抗性和敏感寄生虫中的青蒿素活性(Bozdech等,2015)。在该帐户中,泛素 - 蛋白酶体途径(UPP)的不同部分的突变可能会影响阿甘辛蛋白的反应(Bridgford等,2018)。最近的研究表明,19S和20S的蛋白酶体亚基的突变敏化K13 C580Y寄生虫,这是基于RSA的更大湄公河区域中最普遍的青蒿素耐药性突变,基于RSA(Rosenthal和Ng,2021; Rossenthal和Ng,20223)。此外,在编码非素化酶UBP-1的基因中的两个突变在抗甲半氨着这甲蛋白蛋白的抗chabaudi P. chabaudi寄生虫中被鉴定出来,并且证明它们可以介导恶性疟原虫中的艺术耐药性(Cravo,2022222)。后者负责底物的识别,去泛素化,展开和易位。泛素 - 蛋白酶体系统对于真核细胞至关重要,因为它负责蛋白质的降解或回收利用,侵蚀了几个细胞过程,包括细胞周期,转录调节,细胞应激反应,信号转导,信号转导,和细胞曲折(Wang et al。,2015年)。这种蛋白质调节对于在两个宿主之间的生命周期进程中发生的疟疾寄生虫经历的快速转化至关重要,尤其是在复制率高的阶段(Krishnan和Williamson,2018年)。UPP涉及一种称为泛素化的蛋白质后修饰过程,该过程将多泛素链连接到随后由26S蛋白酶体识别的蛋白质上。如果蛋白质被蛋白质组恢复或降解,则泛素化定义的类型(Aminake等,2012; Wang等,2015)。26S蛋白酶体是一种枪管形的多亚基蛋白酶复合物,分为20S核心颗粒(CP)和19S调节粒子(RP)。20S核心通过肽基戊酰基肽水解(PGDH)(caspase样),类似胰蛋白酶样和类似chymotrypsin的活性负责蛋白水解,分别遇到了三种B-亚基(B1,B2和B5)(分别为Wang et al。,2015年)。这些催化活性的亚基分别使用N末端苏氨酸作为酸性,胰蛋白酶和疏水残基的羧基末端后的亲核试剂和裂解。这些活动站点
泛素 - 蛋白酶体系统(UPS)可用于异常或冗余蛋白质的降解和转化。UPS调节细胞的增殖,分化和代谢,神经网络形成,自动噬菌体以及其他生理或病理过程[1]。UPS受到严格控制,系统通常由泛素(UB),26S蛋白酶体,去泛酶的酶(DUBS),泛素激活酶(E1),Ubiq ubiq uitin uitin-conjugating酶(E2)和ubiquitin ligiigasase(E1)(E1)(E1)(E1)(E1)(E1)(E2)(E2)(E3)(E3)。APC是一种巨大的多sub单位蛋白质复合物,至少13个亚基可以通过泛素化控制细胞周期的关键底物。APC将它们定位在26S蛋白酶体中,启动后期,并通过进一步的降解[3]导致有丝分裂戒断。两个结构同源的辅助亚基CDC20和CDC20同源物1(CDH1)通常被视为“ APC coacti vators”。CDC20和CDH1负责扎带底物并激活APC的泛素连接酶活性,形成了两种不同的E3泛素连接酶配合物,APC CDC20和APC CDH1 [4]。cdc20主要在分区和早期G1阶段起抑制作用,通过降解securin和有丝分裂周期来阻碍分裂
图2 PTM研究中的关键范例。在所有面板中(以及本文中的其他数字),用浅红色显示了修改,绿色的蛋白质底物,蓝色的作者,黄色的橡皮擦和紫罗兰的读者。(a)通过蛋白质磷酸化调节酶糖原磷酸化酶的糖原降解活性。该酶的磷酸化和去磷酸化最终受激素胰高血糖素和胰岛素调节,通过用虚线箭头示意性地指示的信号通路。(b)蛋白质泛素化作为26S蛋白酶体降解的信号。泛素化反应是由由E1,E2和E3蛋白组成的酶促级联反应,需要ATP。底物上的Degron基序通过与E3连接酶进行物理相互作用来促进泛素化。poly(ubiquityl)atted底物通过26S蛋白酶体内的受体蛋白识别,展开和降解。(c)通过组蛋白代码调节染色质结构和基因表达。组蛋白尾部的蛋白质修饰是由作者酶安装的,由橡皮擦酶除去,并被读取器蛋白识别。(d)基于面板C的PTMS调节蛋白质的一般方案。(E)从单个蛋白质编码基因产生多种蛋白质成型的变异来源。单个基因可以剪接以产生多种同工型,可以通过差异PTM模式进一步多样化。该图中省略的蛋白质成型多样性的其他来源包括,例如,单核苷酸多态性和替代翻译起始位点。ac,乙酰化;我,甲基化; P,磷酸化; UB,泛素。
总结泛素蛋白水解系统在一系列基本的细胞过程中起重要作用。是细胞周期的调节,免疫反应和炎症反应的调节,信号转导途径的控制,发育和分化。这些复杂过程通过单个或子集的蛋白质的特异性降解来控制。deg含量涉及两个连续的步骤,共轭泛素的多种部分以及26S蛋白酶体对标记蛋白的降解。一个重要的问题涉及基于系统特异性的机制的身份。底物识别受一个大型家族泛素连接酶的控制,该连接酶可以认识底物,结合它们并催化/促进它们与泛素的相互作用。生物评估22:442±451,2000。β2000 John Wiley&Sons,Inc。
从而导致抗肿瘤药物浓度不足,无法抑制肿瘤细胞的生长。近年来,虽然有一些关于刺激响应性药物释放载体增加骨转移局部药物浓度的报道,13 但很少有研究解决纳米颗粒的骨靶向性和随后的骨解吸之间的难题。硼替佐米(BTZ)是FDA批准的第一个蛋白酶体抑制剂,14 它能特异性地抑制蛋白酶体26S亚基的活性,显著降低NF-kB抑制蛋白(IKB)的降解,15 IKB可以抑制核因子kB(NF-kB)的活性,从而选择性地抑制生长相关基因的表达,最终导致肿瘤细胞凋亡。 BTZ临床上一般用于治疗多发性骨髓瘤和套细胞淋巴瘤。16,17
这项研究的目的是在HOA loc sand芒果果皮上收集,分离和识别一些酵母品种,能够抑制浓咖啡酸盐的糖菌蘑菇,这些蘑菇在收获后在舞台上在芒果上引起炭疽病。在这项研究中,酵母菌菌株从芒果壳中取代,芒果壳基于许多不同的方法,包括形态特征,生化特征和分析26S rDNA序列。结果确定了三种酵母菌,包括Hanseniasporta Thailandica,Hanseniasporta Oputiae和Pichia Barkeri。然后,这些酵母菌菌株对Colletotrichum gloeosporioides的抑制能力是通过CO培养方法在体外进行的,结果表明,在培养10天后,拮抗剂比50%以上的拮抗率高于50%。这项研究最初表明,使用酵母来控制生物学是控制收获后对芒果的致病作用的潜在方法。
1. Gimeno IM, 2008, 疫苗, 26S, C31-C41 2. Witter RL & al., 1997, Avian Dis, 41, 407-421 3. Morrow C., Fehler F. 2004, 马立克氏病:一个不断演变的问题。第 49–61 页,Davison F, Nair V. Elsevier, 伦敦, 英国 4. Baigent S., Davison F. 2004, 马立克氏病:一个不断演变的问题。第 52–77 页,Davison F, Nair V. Elsevier, 伦敦, 英国 5. Witter RL & al., 2002, Avian Dis, 46, 925-937 6 已归档数据。7. 已归档数据。8. 已归档数据。9. 已归档数据。10. 已归档数据。 1 1. 存档数据。12. 存档数据。13. 存档数据。14. 存档数据。15. 存档数据。16. 存档数据。
