使用 EUV 光刻技术不断缩小尺寸的需求为图案化材料和工艺带来了挑战和机遇。缩小 BEOL 互连结构是提高功能设备性能的关键要素。在本文中,我们研究了各种因素对 EUV 单次曝光通孔图案化的影响,以找到缩小临界尺寸 (CD) 的有效策略,从而提高临界尺寸均匀性 (CDU) 和局部临界尺寸均匀性 (LCDU) 并降低缺陷率。这项工作基于在最小水平互连线间距为 28nm 时图案化片上系统 (SoC) 随机逻辑通孔层,这是使用 0.33 NA EUV 工具进行单次曝光互连的极限。该设计使用激进的 3/2 CPP/Mx 齿轮比,相当于 38nm 到 34nm 间距的正交通孔阵列,从而检查主要图案化参数和照明源与矩形通孔的 OPC 处理共同优化的影响。将通孔图案转移到底部电介质,以研究 LCDU 的演变和蚀刻过程中的缺陷率。
摘要 - 本文提出了一种基于神经网络的数字校准算法,用于高速和时间间隔(TI)ADC。与先前的方法相反,所提出的工作依赖于相关的非线性失真校正,而无需事先了解ADC架构特征。动态校准首先用于补偿相关的失真。提出了两个培训优化,包括基于子范围的批处理方案和递归前景共校准流量,以减少错误和过度插入并进一步节省硬件资源。还研究了具有分布重量和共享权重方法的交织ADC的实用校准引擎。为了证明该方法的有效性,通过两个制造的ADC原型验证了校准引擎,一个5 GS/S 16向交织ADC和625 ms/s Interave-SAR辅助辅助管道ADC。测量结果表明,在校准之前和之后,针对不同频率输入,SFDR在16.9dB和36.4dB之间提高。为了在准确性和功耗之间取舍,在FPGA和28NM CMOS技术上都实施了量化和修剪的发动机。实验结果表明,硅的专用校准以333MHz时钟速率消耗8.64MW,0.9V电源。测量结果表明,量化的硬件实现仅在SFDR中损失0.4-4 dB。
摘要 - 与硅相比,与2.5D异质整合的令人信服的选择已成为令人信服的选择。它允许以低成本直接安装在顶部的嵌入式模具与传统的翻转芯片模具之间的3D堆叠配置。此外,玻璃中的互连螺距和通过玻璃(TGV)直径与硅中的对应物相当。在这项研究中,我们研究了玻璃间插座提供的3D堆叠的功率,性能,面积(PPA),信号完整性(SI)和功率完整性(PI)优势(PI)优点。我们的研究采用了chiplet/封装共同设计方法,从RISC-V chiplets的RTL描述到最终的图形数据系统(GDS)布局,利用TSMC 28NM用于chiplets和Georgia Tech的Interposer的Georgia Tech的3D玻璃包装。与硅相比,玻璃插入器的面积降低了2.6倍,电线长度降低了21倍,全芯片功耗降低了17.72%,信号完整性增加了64.7%,功率完整性提高了10倍,热量增加了35%。此外,我们通过3D硅技术提供了详细的比较分析。它不仅突出了玻璃插入器的竞争优势,而且还为每个设计的潜在局限性和优化机会提供了重要的见解。
数千到数百万个敏感信号需要通过稀释制冷机的所有温度阶段进行传输,以操作由许多量子位组成的未来大规模量子处理器。导热同轴电缆数量的激增将超出制冷机的冷却能力,对量子核心造成不利影响。将控制电子设备降至低温允许使用现有的超导电缆,减轻低温阶段之间的热传导,并且似乎是实现操作量子位数可扩展性的明确途径。这项博士论文旨在探索在低温下将工业 CMOS 28nm 全耗尽绝缘体上硅 (FD-SOI) 技术用于量子计算应用。我们的第一个目标是将有关低温下 FD-SOI 28nm 晶体管的稀疏现有知识扩展到电路设计的实际方面,然后用于开发紧凑模型。为了加快对具有长达一小时的固有冷却周期的单个器件的表征,我们设计了一个集成电路,该集成电路多路复用了数千个具有不同几何形状和栅极堆栈类型的晶体管,用于低频测量电流-电压特性和从 300 到 0.1K 的配对分析。我们讨论并分析了不同温度下电路设计中重要量的变化趋势,例如跨导、电导和单个晶体管的跨导与漏极电流比。其次,我们探索了半导体量子器件与经典电子器件的低温共积分和全片上集成,旨在实现低至毫开尔文范围的特定测量。我们首先通过设计和表征低功耗跨阻放大器 (TIA) 来关注量子点器件的亚纳安电流测量。高增益放大器成功应用于测量单量子点和双量子点器件的电流,这些器件分别通过引线键合几毫米或片上集成几微米。为了进一步利用集成到同一基板的优势,我们将 GHz 范围的压控振荡器连接到双点的其中一个栅极,以尝试观察完全集成设备中的离散电荷泵。最后,我们提出了一种新的测量方案,利用低温电子学功能作为众所周知的反射测量法的替代方案,解决了单个量子器件栅极电容的测量问题。通过在 200 MHz 范围内集成电压控制电流激励和电压感应放大器,两者都靠近连接到 LC 槽的量子器件,器件电容变化的读出电路变成纯集总元件系统,具有谐振电路的阻抗测量,而没有任何像反射法中那样的波传播。这种方法增加了测量装置的简单性和紧凑性。我们甚至用由晶体管和电容器组成的有源电感器取代了反射法中使用的笨重无源电感器,在相同电感下面积降低了 3 个数量级,从而提供了更好的可扩展性。由此产生的电路成功测量了 4.2K 下纳米晶体管的 aF 电容变化,揭示了栅极电容中随栅极和背栅极电压而变化的振荡量子效应。在这篇论文的最后,给出了一幅与电路架构和设计相关的挑战的图景,最终目标是进入大规模量子处理时代。
摘要 — 我们为氧化物半导体 (OS) 晶体管提供自上而下和自下而上的设计指南,这些晶体管针对逻辑平台上的增益单元存储器进行了优化。利用高密度、高带宽的片上增益单元存储器,通过最大限度地减少对片外动态随机存取存储器 (DRAM) 的访问,深度神经网络 (DNN) 加速器的执行时间可缩短 51-66%。为了平衡保留时间和存储器带宽(自上而下),选择原子层沉积 (ALD) 氧化铟锡 (ITO) 晶体管(自下而上)。经实验优化的器件表现出低关态电流(V GS = -0.5 V 时为 2 × 10 -18 A/µ m)、良好的导通电流(电源 < 2 V 时为 26.8 µ A/µ m)、低亚阈值摆幅 (SS)(70 mV/dec)和良好的迁移率(27 cm 2 V -1 s -1)。利用优化后的器件,在28nm节点、V DD = 0.9 V条件下模拟了一个64行(WL)×256列(BL)的增益单元存储器宏。模拟结果表明,混合OS-Si增益单元存储器实现了0.98倍频率和3倍静态随机存取存储器(SRAM)密度,而OS-OS增益单元存储器预计以N层3-D堆叠在0.5倍频率和N乘以1.15倍SRAM密度下工作。
半导体行业集成电路和电源管理的发展迫使电子电路能够更高程度地集成到片上系统解决方案中。传统的低压差稳压器具有较大的外部电容器来补偿频率响应和瞬态变化。为了集成到片上系统应用中,必须移除外部电容器。对于 28nm CMOS 工艺技术,所提出的解决方案提供了一种快速调节路径,无需外部电容器即可补偿低压差稳压器的瞬态响应。该低压差稳压器无需外部电容,具有快速调节路径,供电电压为 1.8V,能够调节 1.2V、1.1V、1V、0.9V、0.8V 和 0.7V 的输出电压。从无外部电容的低压差稳压器的通用无补偿架构来看,在误差放大器中实现了一个值为 5pF 的内部米勒电容,目的是在系统中产生频率补偿并确保其交流稳定性。研究并实施了一种快速调节路径补偿方案,用于补偿负载电容相当于 1 pF 时最大负载电流变化为 1 mA 的瞬态响应。仿真结果表明,低压差稳压器在最先进的架构中具有竞争力,超越了一些架构,输出电压的正负瞬态变化值分别记录为 48 mV 和 49.8 mV,恢复时间为 0.5 µ s。随后进行的 PVT(工艺、电压、温度)极端情况模拟和蒙特卡罗分析表明,所设计的系统符合 ISO 26262 标准。提出了所提系统的布局设计,以供将来集成。
来自成像方式的误差以及由于与 IC 样品的物理相互作用而直接导致的误差。由于设计实践和制造 IC 所用材料而在 RE 工作流程中引入的噪声被列为“ 代工厂/节点技术特定 ” 误差源。最后,由于人为相互作用而发生的误差列在“ 人为因素 ” 下。讨论这些噪声源的来源文献还介绍了抑制它的方法。例如,可以通过在 IC 芯片表面沉积薄层导电材料(如碳或铂)来防止与成像相关的误差源中的传导 [18, 11]。为避免冗余,这里不再详细讨论除版图特定误差源之外的各个噪声源。版图特定误差源(例如特征尺寸和接近度)是版图综合和所谓设计规则的直接结果。复杂的几何结构只有在成像方式的分辨率能力范围内才能成像。类似地,彼此靠近放置的结构也可能无法有效解析。简而言之,除非使用较小的视野或高放大倍数,否则这些特征可能会被 SEM 截断。表 1 显示了讨论每个错误源及其解决方法的著作。引用的著作中还提供了全面的模型验证。无法抑制或预防的错误源作为合成图像生成工作流程的一部分,以填充数据集。另一个值得关注的是,用于生成数据集的设计布局选择有限。任何数字设计的基本构建块都是标准单元。它们代表基本逻辑门、更复杂的门(例如全加器)和寄存器,并在整个设计中重复出现。流行的商业 IC 设计工具和开源标准单元库(均由 Synopsys 授权用于生成数据集)用于合成和布局布线高级加密标准 (AES) 设计。这些工具分别遵循 90nm 和 32/28nm 工艺设计套件 (PDK) 中指定的设计规则。
摘要:在生命的三个领域中,同源重组(HR)的过程在修复双链DNA断裂和重新开始停滞的复制叉中起着核心作用。奇怪的是,参与人力资源过程的主要蛋白质参与者似乎对于高素化的古细菌提出了有关人力资源在极端条件下的古细菌中的复制和修复策略中的作用的有趣问题。该过程的一个关键参与者是重组酶RADA,它允许同源链搜索,并提供了遵循DNA合成并恢复遗传信息所需的DNA底物。DNA聚合酶在古细菌中尚不清楚链交换步骤后的操作。使用Abyssi Abyssi蛋白的工作,在这里我们表明,DNA聚合酶,家庭-B聚合酶(POLB)和家族-D聚合酶(POLD)都可以负责处理RADA介导的重组中间体。我们的结果还表明,与POLB相比,POLD的效果要少得多,以扩展位移环(D-Loop)底物处的入侵DNA。这些观察结果与先前对热圆菌物种获得的遗传分析相吻合,表明POLB主要参与DNA修复,而不是必不可少的,这可能是因为Pold可以接管其他伴侣。
