伪尿苷 ( Ψ ) 是哺乳动物非编码 RNA (ncRNA)(包括 rRNA、tRNA 和 snRNA)中最常见的非规范核糖核苷,占总尿苷水平的 ∼ 7%。然而,Ψ 仅占 mRNA 上尿苷的 ∼ 0.1%,其对 mRNA 功能的影响仍不清楚。研究表明,Ψ 残基会抑制宿主先天免疫因子对外源 RNA 转录物的检测,因此病毒可能通过破坏宿主伪尿苷合酶 (PUS) 将 Ψ 残基添加到 mRNA 中来抑制受感染细胞的抗病毒反应。在这里,我们描述并验证了一种新型的基于抗体的 Ψ 映射技术,即光交联辅助 Ψ 测序 (PA- Ψ -seq),并用它来映射不仅在多个细胞 RNA 上而且在 HIV-1 编码的 mRNA 和基因组 RNA 上的 Ψ 残基。我们描述了 293T 衍生细胞系,其中先前报道的人类 PUS 酶会将 Ψ 残基添加到人类 mRNA 中,特别是 PUS1、PUS7 和 TRUB1/PUS4,通过基因编辑被灭活。令人惊讶的是,虽然这使我们能够将细胞 mRNA 上的几个 Ψ 添加位点分配给这三种 PUS 酶中的每一种,但 HIV-1 转录本上的 Ψ 位点仍然不受影响。此外,PUS1、PUS7 或 TRUB1 功能的丧失并没有显著降低在人类总 mRNA 上检测到的 Ψ 残基水平(低于野生型细胞中的约 0.1% 水平),因此意味着将大量 Ψ 残基添加到人类 mRNA 中的 PUS 酶仍有待确定。
图1。点击编辑的概述和开发。a,单击编辑器的示意图(CE),它是由RNA程序编程的DNA nickase,DNA依赖性DNA聚合酶和ssDNA绑扎域组成的融合蛋白(例如,嗯,核酸内切酶; Huhe)与导向RNA(GRNA)配对。Click-DNA(clkDNA)模板是一种单链DNA寡核苷酸,它编码底漆结合位点(PBS),聚合酶模板(PT)和Huhe识别位点B,从709序列产生的系统生成树47序列47,描绘了Huains多样性的小型元素,该序列是47个序列。量表表示序列之间的分数相关性。c,与ssDNA分子共价磷酸酪氨酸加合物形成共价磷酸酪氨酸加合物的示意图,其中huhe结合了识别顺序以引发单点样共轭反应。d,逐步点击编辑机制,涉及:(1)DNA目标位点释放非目标链(NTS)3'基因组瓣,(2)NTS laps plap杂交与clkDNA PBS,(3)NTS-NTS-NTS-NTS-PBS连接与DNA依赖性DNA Polimentsion(4)nts-pbs intthers(3) clkDNA的编码PT,(5)新合成的3'和天然基因组5'襟翼之间的平衡,以及(6)5'-flap裂解,导致编辑结合。e,在HEK 293T细胞中的点击编辑转染的示意图,涉及CE质粒的共转染(Porcine Circovirus 2(PCV2)Huhe Huhe与NSPCAS9(H840A)融合,并从e.coli dna Polymerase I(DNA Polymerase I(DNA Polymerase I(DNA Polymerase I(DNA Polymerase I(DNA))中, clkDNA和一个(或两个)GRNA质粒(S)。ngrna)针对非编辑链的目标编辑效率。f,g,使用DNMT1 GRNA和带有PBS13-PT12的clkDNA插入或读取突变(Indels)的 f,g, f,g, f,g, f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g, f,g, f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g, f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即
当前,由 SARS-CoV-2 引起的 COVID-19 正在人类中迅速传播,构成全球卫生紧急情况(https://www.who.int/);截至 2020 年 4 月 29 日,全球确诊病例 3,018,681 例,死亡 207,973 例。了解冠状病毒的受体识别机制,从而调整其致病机制、传播速度和宿主范围,是战胜这一流行病的关键。1,2 冠状病毒的 S 蛋白是病毒入侵细胞所必需的。此外,进入需要细胞蛋白酶来引发 S 蛋白;它们在 S1/S2 和 S2' 位点裂解 S 蛋白,从而促进由 S2 亚基介导的病毒和靶细胞膜的融合。众所周知,SARS-CoV以血管紧张素转换酶2(ACE2)作为进入受体,并利用细胞丝氨酸蛋白酶TMPRSS2来启动S蛋白。3,4 SARS-2-S与SARS-S之间的氨基酸同源性约为76%,1但SARS-CoV-2如何进入仍有待充分探索。SARS-2-S与SARS之间的氨基酸同源性为了进一步了解病毒进入的机制,Hoffmann等人首先寻找SARS-2-S有效蛋白水解的证据。带有C端抗原标签的293T细胞表达的SARS-2-S蛋白的免疫印迹分析显示一条S2亚基带,表明SARS-2-S可以被有效水解,这与其S1 / S2裂解位点存在几个精氨酸残基相一致。有趣的是,冠状病毒的人畜共患潜力是由 S 蛋白的裂解位点序列决定的。1 因此,还需要进一步研究以了解 SARS-CoV-2 入侵人细胞是否也需要多碱基裂解位点,并详细描述这些裂解位点。接下来,作者使用携带 SARS-2-S 和 SARS-S 的 VSV 病毒感染一系列人和动物细胞系,并观察到它们侵入相同的细胞谱系。与这一发现一致的是,ACE2 和 SARS-S 结合所必需的大多数氨基酸在 SARS-2-S 中是保守的,并且定向表达 ACE2,而不是人 DPP4 或人氨基肽酶 N(MERS-CoV 和 HCoV-229E 的进入受体),使得 SARS-CoV-2 和 SARS-CoV 能够成功感染不敏感的 BHK-21 细胞。此外,针对人 ACE2 产生的抗血清可以保护 BHK-21 细胞免受 SARS-CoV-2 和 SARS-CoV 的侵袭。总而言之,这些研究强烈暗示 ACE2 是 SARS-CoV-2 的细胞受体。在
关键词:澄清,肺病毒载体,细胞和基因治疗(CGT),膜材料,使用许多细胞和基因疗法(CGT),利用慢病毒载体(LV)将治疗性遗传材料运送到宿主细胞的早期开发中,导致了最高的生产量的延伸和延伸的过程,从而使遗传细胞促进了量度高的遗传细胞,从而超过了kossect speatign optren的过程。 。慢病毒载体的生产被广泛细分为上游(载体的产生)和下游(旨在在稳定且无菌的配方中净化和产生浓缩的高质量功能矢量)。膜加工通常在下游步骤中使用,从澄清和无菌过滤过程中的正常流量过滤(NFF)到矢量浓度或配方期间的切向流量过滤[2]。在本演讲中,我们将通过不同材料的NFF膜来阐明原油收获。不同的膜化学表现出独特的特性,可以影响污染的速度和程度。一种结垢机制是通过吸附,当饲料中的材料通过疏水相互作用或离子电荷吸引到膜表面时,可能会发生这种情况[3]。在我们的研究中,我们使用辅助HEK 293T细胞生产了瞬时转染的VSV-G型第三代LV,并通过不同的膜化学液通过0.45 µM过滤器阐明了粗糙的收获。这强调,与尼龙的功能载体67%相比,PES恢复了93%,膜材料的选择可以改善LV恢复。然后,我们应用了新型技术,例如表面Zeta电位,以预测与表面和粗糙收获饲料的相互作用。这表明与负LV粗饲料相比,尼龙具有正表电荷,这可能会导致更高的吸附率ON和与膜表面相互作用,从而导致功能矢量颗粒的损失。最后,我们使用共共聚焦(CLSM)和扫描电子显微镜(SEM)可视化膜表面的结垢和LV。已经进行了进一步的研究,以了解收获饲料的变异性(例如悬浮培养物或稳定的细胞系材料)如何改变这些相互作用,并且在何种程度上可以预处理或膜制备步骤有助于减少这些损失。行业旨在朝着可以在较小且多种设施(C级或D级)中运行的封闭的一次性系统,需要仔细选择诸如过滤膜之类的材料以进行过程兼容性和最佳恢复[4]。
