钢铁行业面临着政治压力,要求其以将全球变暖控制在 2°C 以下所需的速度减少排放。众所周知,世界上生产的 90% 以上的金属都是钢铁,钢铁行业产生的温室气体排放量占全球排放量的 7% 至 9%,这些温室气体来自化石燃料的使用和工业。为了符合国际能源署的 2 度情景 (IEA 2DS),该行业必须在 2050 年前将其排放强度降低 65%,以 2014 年的水平为基准。该行业历来在能源效率方面取得了显著的提高。然而,现代钢铁厂目前的运行速度接近最佳技术极限。为了适应向低碳经济的转型,钢铁行业需要通过部署和商业化激进的减缓技术和替代炼钢工艺,逐步减少排放。
2DS 2 度情景 APR 水相重整 AtJ 酒精喷气燃料 B2DS 低于 2 度情景 CAAFI 商业航空替代燃料倡议 CORSIA 国际航空碳补偿和减排计划 DSHC 直接糖转化为碳氢化合物 ETS 排放交易计划 FAME 脂肪酸甲酯 FT 费托合成 GHG 温室气体 HDO 加氢脱氧 HEFA 加氢酯和脂肪酸 HFP 高凝固点 HTL 热液化 HVO 加氢植物油 IATA 国际航空运输协会 ICAO 国际民用航空组织 IEA 国际能源署 ILUC 间接土地利用变化 LCFS 低碳燃料标准 MSW 城市固体废物 NDC 国家自主贡献 PtL 电转液 PV 光伏 RED 可再生能源指令 RTFO 可再生运输燃料义务 SAF 可持续航空燃料 SIP 合成异构烷烃煤油 SPK合成石蜡煤油
在二维电子系统(2DE)中发现了这种丰富行为的显着示例,该系统在带绝缘子3(LAO)和SRTIO 3(STO)之间形成的界面形成。[3]在基于氧化物的2DE中观察到了许多有趣的物理现象,包括超导性,[4]一种有趣的磁反应,[5,6]和非常规的RashBA效应。[7–9]基于该系统的不同设备已被证明,首先通过编写原子力显微镜的尖端编写结构来避免与氧化物的光刻图案相关的固有困难。[10]虽然最终克服了这些,并且证明了具有电子束光刻术的电场效应的有效制造[11] [11]在LAO/STO中实现高迁移率2DE所需的高增长温度仍需为设备制造带来挑战。[12]可以通过在室温下沉积Al层来形成2DE的演示,已经为在设备中实现基于STO的2DS的新观点开辟了新的观点。[13]最近观察到基于Al/sto 2DES的设备中非常大的旋转转换效应,突出了该系统对氧化物电子产品的潜力。[14]同样的工作还表明,2DES的Complex频段结构对于其属性和设备性能至关重要。现在,在最常见的晶体学方向上,通过角度分辨光学光谱(ARPE)对Sto裸露面的2DE的电子结构已经进行了很好的研究。[15–20]该2DE是通过引入氧气空位来形成的,这些空位是通过在UHV条件下用高能量光子的辐照在裸露表面产生的。[21]相同的机制允许在其他氧化物(如KTAO 3,SNO 2和TIO 2)中稳定表面2DES [22-26],并且与Ar Ion bombard bombard的金属STO表面层不同。[27,28]铝在UHV裸露表面上的铝沉积以类似的方式产生了2DE。在这种情况下,由于有效的氧化还原反应而产生了氧空位,而Al膜从底物中泵入氧气,而氧气则将其氧化为绝缘Alo X。[13],由于诱导此Al/sto 2DE仅需要很少的Al,因此表面敏感的ARPES测量也可以访问。正如预期的那样,通过两种方法获得的2DE的电子结构相似,因为两个系统都出现了氧气空位
Advanced Materials for Biosensors – Special Issue of SMALL Arben Merkoçi Biosensors represent analytical devices that contain a biological or synthetic element (called receptor) such as enzymes, antibodies, aptamers and more, in close contact with a transducer that is able to transform the receptor's response while recognising an analyte (chemical or biochemical species with interest to be detected) into a measurable signal.生物传感器领域的研发引起了人们的重大关注,这是由于其在各个领域的应用,包括医疗保健,环境监测,食品安全和保障以及其他行业。对于多种应用程序,这些设备应满足放心的标准:实时连接,标本收集的便利性,负担得起,敏感,特定,特定,用户友好,快速,稳健,不含设备,并交付给需要这些的人。其井操作(满足分析性能参数)与在其制造过程中使用的不同部分(例如换能器和受体)在其制造过程中使用的纳米和微材料密切相关,此外还包括整个设备/平台集成,包括与最终用户的通信。在一般材料领域,尤其是纳米材料领域的进步在品牌新生物传感器的开发或改善现有培训的性能方面起着至关重要的作用,导致了新有趣的应用程序(例如植入或可穿戴的格式化形式生物传感器)。固定。此外,包括有趣的金属或聚合物颗粒在内的各种高级材料已被广泛报道为标签(例如,高级材料的独特性能,包括纳米材料,例如其高表面积面积与体积比,可调的光学,电气和催化性能以及它们的机械强度对生物传感器的设计和应用非常有吸引力。高级材料的重点首先是在试图提供其他信号放大的传感器上,同时被用作受体平台(生物分子等)使用包括复合材料在内的几种先进材料来改善传感器的电子传递性能对于提高电化学生物传感器的灵敏度至关重要。附着在信号抗体或适体上),以确保信号扩增。在不同的高级材料,2D材料之间(例如石墨烯,二维碳同素同素)一直是生物传感器研究中感兴趣的重点。电子特性,例如高电导率以及较大的表面积和出色的生物相容性,使得2DS的理想材料可用于生物传感。这些材料的高表面与体积比允许生物分子有效固定,这又带来了由于与受体的有效相互作用而带来的灵敏度和选择性增强。这些材料的独特电子性能也启用了无标签检测,非常要求它简化生物传感器设计,提供易于使用和快速响应设备。
