• 高达 14A 的电池支持 • 27.2V 电源程序 • 快速、全自动 8 步充电 • 适用于 24V 铅酸、WET、Ca/Ca、AGM、MF 和大多数 GEL 电池的“NORMAL”程序 • “RECOND”模式可修复深度放电的铅酸电池 • 充电器类型:8 步、全自动充电周期 • 电池类型:正常 24V、WET、MF、Ca/Ca、AGM、GEL • 低 2V 启动电压充电 • 极低纹波 • 自动并联负载补偿 • 自动温度补偿 • 重型 2m 充电电缆 • 防护等级:IP44 • 保修:2 年 • 配件:可选 BUMPER 300 硅胶保护器和 WALL HANGER 300 壁挂套件
NSI1311 是一款基于 NOVOSENSE 电容隔离技术的高性能隔离放大器,输出与输入分离。该器件的单端输入信号范围为 0.02V 至 2V。NSI1311 的高输入阻抗使其非常适合连接到高压电阻分压器或其他具有高输出电阻的电压信号源。该器件的固定增益为 1,并提供差分模拟输出。低偏移和增益漂移确保整个温度范围内的精度。高共模瞬变抗扰度确保该器件即使在存在高功率开关(例如电机控制应用)的情况下也能提供准确可靠的测量。故障安全功能(缺少 VDD1 检测)简化了系统级设计和诊断。主要特点
NSI1311-Q1 是一款基于 NOVOSENSE 电容隔离技术的高性能隔离放大器,输出与输入分离。该器件的单端输入信号范围为 0.02V 至 2V。NSI1311-Q1 的高输入阻抗使其非常适合连接到高压电阻分压器或其他具有高输出电阻的电压信号源。该器件的固定增益为 1,并提供差分模拟输出。低失调和增益漂移确保整个温度范围内的精度。高共模瞬变抗扰度确保该器件即使在存在高功率开关(例如电机控制应用)的情况下也能提供准确可靠的测量。故障安全功能(缺少 VDD1 检测)简化了系统级设计和诊断。主要特点
电路在暴露于辐射时。绝大多数商用电路在从海平面到飞机飞行高度(< 20 km)的自然环境中运行,其中错误主要由大气中子与硅的相互作用引起。最初,在 14 MeV 和 100 MeV 中子辐照下,测量了电源电压为 2V 至 5V 的静态存储器的软错误率 (SER)。由于电源电压降低而导致的错误率增加已被确定为未来低压电路运行的潜在危害。提出了一种用于准确表征制造过程 SER 的新方法,并通过对 0.6 jj.m 工艺和 100 MeV 中子的测量对其进行了验证。该方法可应用于预测自然环境中的 SER。
图1b显示了提出的三切口T型(3S-TT)桥腿,其开关节点SW 1可以与正,中或负轨道绑定,即中间或负轨,即𝑉in,p = in,p =𝑉in,n =𝑉n = in = in n = the,在相同的双极和/或三级输出电压能力中,与fb相同。与常规的TT桥腿[13],[14]不同,中点开关S F,1用标准的GAN晶体管实现,而不是通过两个这样的晶体管的抗序列连接或单一的双向交换机[15] - [17]。由于通常是非常低的直流电压,通常是p≤2v和/或𝑉in,n≤2v:1c,只要gan hemt的基本(功能)对称性可以支撑负耗压电压𝑉ds <0,只要栅极少量电压𝑉gd gd t - ds> - ds> ds> - (𝑉ds> ds> ds> ds> ds> ds> - 𝑉t-t- t- t- gs)。因此,可以使用负栅极源电压𝑉gs在一定程度上增加反向阻塞能力。1,2有利地,在任何给定时间,在载荷电流路径(即与负载串联)中只有一个开关,而不是在FB的情况下而不是两个开关。因此,考虑到每个位置的相同数量的晶体管,提出的3S-TT将传导损失减少至少两个。3图进一步注意到,在3S-TT中,从S HS,1到中点开关S F的换向,1涉及低侧开关的反行二极管,如缩放波形所示。即,2进一步显示了FB的关键波形和提议的3S-TT相模块(即,在以下内容中考虑了𝑁pH = 1),在下面考虑了相同的输出电压以及(总数)串联电感器和输出滤波器套管器的相同需求和应力(请注意3S-TT的设备开关频率是3S-TT的设备开关频率是FB,但)。
摘要人工智能 (AI) 在军事行动规划和支持中发挥着越来越重要的作用,并成为情报和分析敌方情报的重要工具。人工智能的另一个应用领域是自主武器系统和车辆的应用领域。人工智能的使用预计将对人机界面(机器学习、人机协作)的军事功能产生更大的影响。人工智能有望克服大数据的“3V 挑战”(数量、种类和速度),也有望降低其他“2V”(真实性、价值)的风险,并基于人工智能的知识在受控的决策层面上进行数据处理。本文旨在概述人工智能在军事中的应用潜力,并强调需要确定和定义可衡量的指标来评估先进技术和解决方案的效益,这些技术和解决方案有望提高行动的质量和绩效,重点关注态势感知和决策支持以及后勤和作战规划以及建模和仿真 (M&S) 等关键领域。
摘要 — 为了确保这种新兴器件的可靠性,控制导电桥式随机存取存储器 (CBRAM) 中的细丝生长至关重要。在这里,我们证明了扫描焦耳膨胀显微镜 (SJEM) 可用于检测和精确定位工作中的交叉 CBRAM 器件中的导电细丝。基于 Pd/Al 2 O 3 /Ag 堆栈的柔性存储器件首先在低温下在聚酰亚胺基板上精心制作。这些器件在低压 (<2V) 下显示置位和复位操作,开/关比高于 10 4 。在低电阻状态下操作时,SJEM 振幅图像显示出单个导电细丝存在下的热点。在 50kHz 下提取的有效热扩散长度为 4.3µm,并且还证明了热膨胀信号与耗散的焦耳功率成正比。我们相信,所提出的程序为可靠性研究开辟了道路,可将其应用于任何基于细丝传导的存储器件系列。索引词——CBRAM、柔性电子、SJEM、长丝定位。
2v 二价 9v 无价 4v 四价 AIS 原位腺癌 CI 置信区间 CIN 宫颈上皮内瘤变 CIS 原位癌 CKC 冷刀锥切术 GRADE 建议、评估、制定和评价的分级 HPV 人乳头瘤病毒 HSIL 高级别鳞状上皮内病变 ITT 意向治疗 IRR 发病率比 LEEP 环电外科切除术 LLETZ 转化区大环切除术 LSIL 低级别鳞状上皮内病变 NETZ 转化区针切除术 NITAG 国家免疫技术顾问组 NRSI 干预效果的非随机研究 OR 比值比 PRESS 电子检索策略的同行评审 RCT 随机对照试验 RD 风险差异 RoB 偏倚风险 ROBINS-I 非随机研究中的偏倚风险干预措施 RR 风险比 SWETZ 直丝切除转化区 VaIN 阴道上皮内瘤变 VE 疫苗效力 (RCT) 或有效性 (NRSI) VIN 外阴上皮内瘤变 WHO 世界卫生组织
