s7表:目标读取深度对相对于3000倍深度值所显示的成本和时间的影响。在500x,1000x,2000x,3000x,4000x和5000x的特定读取深度上进行参数与序列144个样本的比较,相对于3000x深度的值显示(BOLD表示)。生物信息学分析的时间涵盖了从RAW NGS数据到变体列表的输出的管道,不包括此列表的策划。可以通过在每次运行中包括较大数量的样本来实现较低的读取深度(500倍)。这需要每144个样本的成本和时间进行准备和定量,并且由于每次运行的样本数量增加和较小的原始数据文件,总成本降低了0.8倍,总时间减少了0.7。增加深度,以实现非常低的VAF的准确测序,总体上总成本和时间要求提高了1.1至1.3倍。以小时和澳元的原始值参考S8表。
S8表:在特定读取深度处的成本和时间参数与序列144个样本的比较。原始数据文件尺寸为千兆字节(GB),成本为澳元(AUD),并且时间以小时为单位。生物信息学分析的时间涵盖了从RAW NGS数据到变体列表的输出的管道,不包括此列表的策划。可以通过包括每次运行的样本数量更高,并导致每144个样本的原始数据文件大小来实现较低的读取深度(500x)。每144个样品的准备和定量的成本和时间保持不变。测序的成本,数据存储,测序时间和生物信息学的时间因原始数据文件大小而异,从而改变了总成本和时间。请参阅S7表的相对于3000倍读取深度的值所示的这些值(以粗体表示)。
研究了激光波长对原子探针断层扫描(APT)中元素组成分析中精度的影响。系统比较了三种不同的商业原子探针系统 - LEAP 3000 x HR,LEAP 5000 XR和LEAP 6000 XR-用于研究较短激光波长的锡模型涂层,尤其是在深紫外线(DUV)范围内,对蒸发行为的影响。发现的结果表明,较短波长的使用提高了元素组成的准确性,而主潮具有相似的电场强度。因此,热效应减少,进而提高质量分辨能力。这项研究的一个重要方面包括估计不同工具的能量密度比。波长的降低伴随着由于激光斑点尺寸较小而导致的能量密度增加。此外,还研究了检测器技术的进步。最后,确定探测器的死时间,并评估了死区,以调查具有LEAP 6000 XR的氮化物测量中的离子堆积行为。
线粒体疾病(MDS)是最常见的遗传代谢性疾病组,由于广泛的基因型 - 表型异质性,诊断通常具有挑战性。MD是由核或线粒体基因组中的突变引起的,在核或线粒体基因组中,致病性线粒体变体通常是杂质的,通常在血液中的等位基因分数低于受影响的组织。现在可以使用整个基因组测序(WGS)轻松分析两个基因组,但是大多数核变体检测方法无法检测到线粒体基因组中低质质变体。我们开发了一种生物信息学管道,用于从WGS数据中检测,注释和解释杂质单核苷酸变体和插入/缺失变体。我们优化了从高线粒体DNA测序深度(> 3000 x)中准确检测的变体,这些变异是通过WGS从13个对照细胞系重复,10例患者和2,570个健康对照组中获得的血液获得的。MITH可以检测致病性线粒体变体,异质性范围从<1%到100%。通过广泛的变体注释,MITH可以轻松解释线粒体变体,并且可以将其纳入现有的诊断WGS管道中。WGS与MITH结合使用可以简化MD的诊断途径,避免侵入性组织活检,并提高线粒体疾病的诊断率以及线粒体功能受损引起的其他疾病。
