田中教授田中教授教授生物医学工程研究生院Tohoku大学代表技术计划委员会和组织委员会,我们很高兴欢迎您参加IEEE IEEE国际3D系统整合会议2024(3DIC 2024)(3DIC 2024),该会议将在日本的Sendai和Sendai Hotel In> 252中举行,<该国际会议由IEEE电子包装协会(EPS)赞助。在2007年和2008年将前两次3D会议结合了前两次3D会议之后,于2009年在旧金山举行了第一次国际3D会议,该会议于2007年和IEEE EEEE EDS EDS EDS和2007年在Fraunhhofer和IEEE CPMT的赞助下于2003年和2007年的赞助下于2007年和2008年举行。The 2nd conference was held in Munich in 2010, the 3rd in Osaka in 2012, the 4th in San Francisco in 2013, the 5th in Cork in 2014, the 6th in Sendai in 2015, the 7th in San Francisco in 2016, the 8th in Sendai in 2019, the 9th in Raleigh in 2021, and the 10th in Cork in 2023, the respectively.今年将第11次举行会议,范围已扩大到包括3D/chiplets/ai半导体,并将有46篇论文作为一般的口头演示和海报演示。我们很自豪地宣布,我们有五位出色的主题演讲者和来自不同背景和专业知识的七位杰出的邀请演讲者。他们将在3DIC和系统领域讨论各种关键主题,为所有与会者提供丰富而多样的经验。仙台以新鲜的海鲜,美味的米饭和清酒而闻名。在3DIC 2024中,将在电子组件,材料,包装和服务领域的领先公司安装32个展位,以演示与3D/Chiplets Technologies相关的最新产品。在9月25日的第一个会议当天晚上,将在大都会仙台酒店举行宴会。您可以在宴会上享用这些美味的食物和清酒。3DIC 2024不仅涉及演示和展览,还涉及促进联系和协作。我们设计了会议,为您提供许多网络,深入讨论以及与作者,演讲者和同事在咖啡休息期间,每日午餐会和宴会的机会。我们认为,这些互动将与正式会议一样有价值,我们鼓励您充分利用它们扩展您的专业网络并向同龄人学习。我们衷心希望3DIC 2024能够取得成功,您会喜欢它。我们要感谢我们的赞助商,参展商,作者,演讲者,会议主席以及技术计划委员会,组织委员会和当地组织委员会的成员。
Yusuke Ohgush (1) 和 Satoshi Matsumoto (1) (2) (1) 九州工业大学 (2) 东京都立大学 2024 年 9 月 26 日 海报会议 核心时间* 13:00-14:30 13:00-14:30 4034 海报设计 3DIC 异构集成实现 Ahmed Hossam-ELdeen、Sudipta Das、Giuliano Sisto imec
SivaChandra Jangam 于 2015 年获得印度理工学院坎普尔分校 (IIT Kanpur) 电气工程学士学位,并分别于 2017 年和 2020 年获得加州大学洛杉矶分校 (UCLA) 电气工程硕士和博士学位。他是 Subramanian Iyer 教授指导下的异构集成和性能扩展中心 (CHIPS) 的成员。他的研究兴趣包括异构集成、先进封装和系统扩展。他的博士研究是关于硅互连结构 (Si-IF) 技术的开发,这是一种细间距 (10 µm)、高带宽、低延迟和低功耗的异构集成平台。他率先开发了硅基板技术、细间距组装技术和高带宽通信接口。他目前在加利福尼亚州库比蒂诺的 Apple 担任 3D IC 技术专家,隶属于硅工程集团 (SEG-Packaging),开发先进封装解决方案。
“硅光子 3D IC 的电子光子 IC 协同设计与信号/功率完整性和热模拟”,J. Youn、J. Pond、N. Chang 等人,最佳论文候选,DesignCon 2021。“硅光子系统集成 III-V/Si 异质激光器的光学和热模拟”,S. Cheung、D. Liang、J. Pond、N. Chang 等人,DesignTrack,DAC,2021。“基于微环的 DWDM 3D 硅光子学的统计和温度变化热调谐功率预算”,J. Youn、J. Pond、N. Chang 等人,DesignTrack,DAC 2022。
主席 主席 主席 Taiji Sakai (TSMC 日本 3DIC 研发中心有限公司) Shinya Takyu (LINTEC 公司) Beomjoon Kim (东京大学) Chinami Marushima (IBM 日本有限公司) Naoko Araki (DAICEL 公司) Takafumi Fukushima (东北大学) 11:10 (特邀) Cu Pad 的在线 SEM 评估技术
本文介绍了一种无需依赖载体晶圆即可直接放置芯片到晶圆的替代方法,该方法专门针对混合键合、3DIC 和集成光子学应用而设计。芯片到晶圆键合是异质垂直集成设备制造中的关键工艺,通常涉及在集成到目标晶圆之前将各个芯片放置到载体或处理晶圆上的中间步骤。这种传统方法增加了成本、复杂性、潜在的兼容性问题和工艺步骤。在本研究中,我们提出了一种简化的工艺,消除了对载体晶圆的需求,从而简化了集成并减少了制造步骤。利用大气等离子清洗,我们清洁并激活芯片和目标晶圆的表面,以促进直接放置键合。通过实验验证,我们证明了这种方法的可行性和有效性。我们的研究结果展示了成功的芯片到晶圆键合,界面污染最小,键合强度增强。此外,我们还探讨了大气等离子清洗参数对键合质量的影响,为工艺优化提供了见解。这项研究为芯片到晶圆键合提供了一种有前途的替代方案,提高了垂直集成电路制造的效率和简便性,特别是在混合键合、3DIC 和集成光子学应用领域。
摘要-2.5D和3D综合电路(IC)是传统2D SOC的自然演变。2.5D和3D集成是在插头或堆栈中组装预先制造的芯片的过程。此过程会损坏芯片或导致连接故障。因此,芯片后测试的重要性。IEEE STD 1838(TM)-2019(IEEE 1838)设计的设计(DFT)标准定义了用于访问chiplet上DFT功能的强制性和可选结构。兼容的chiplet形成了一个DFT网络,攻击者可以利用该网络来违反在串行路径上传递的消息的机密性或完整性。在这项工作中,我们将消息完整性验证系统与扫描加密机制相结合,以保护IEEE 1838符合DFT实施的扫描链。扫描加密可防止未经授权的参与者将有意义的数据写入扫描链中。消息完整性验证使可检测到的不信任来源的消息。结合使用,两个安全性基原始人都保护了扫描链免受堆栈中恶意芯片的影响,基于扫描的攻击和蛮力攻击。拟议的解决方案在典型的DFT实施的设计中导致的设计少于1%的面积开销,由超过500万门组成,测试时间开销少于1%。索引术语-3DIC,chiplet,可测试性设计(DFT),硬件安全性,信任根
