阿尔茨海默氏病(APP/PS1)的小鼠模型通常会随着年龄的增长而经历认知能力下降。G6PD表现出更好的保护,以防止与年龄相关的功能下降,包括代谢和肌肉功能的IM证明以及与野生型对应物相比的脆弱性。重要的是,G6PD-TG小鼠在男性和雌性中不同年龄的大脑中DNA氧化的积累减少。进一步探讨了调节神经退行性疾病中G6PD活性的潜在益处,生成了三重转基因小鼠(3XTG G6PD),过表达APP,PSEN1和G6PD基因。尽管海马中的淀粉样蛋白β(aβ)水平相似,但在3XTG G6PD小鼠中阻止了APP/PS1小鼠的认知下降特征。这挑战了阿尔茨海默氏病(AD)病因的主要假设以及该领域的大多数治疗努力,这是基于β在认知保存中至关重要的观念。值得注意的是,G6PD的抗氧化特性导致氧化应激参数降低,例如改善的GSH/GSSG和GSH/CYSSSSG比率,而没有氧化损伤标记的重大变化。此外,3XTG G6PD小鼠中的元波动变化增加了大脑能量状态,反对阿尔茨海默氏症模型中观察到的低代谢。值得注意的是,较高的呼吸汇率表明碳水化合物用量增加。由β为β的临床试验的相对失败引起了对淀粉样蛋白级联假设的严重怀疑,以及阿尔茨海默氏症药物的发展是否遵循正确的路径。我们的发现突出了靶向葡萄糖代谢酶的重要性,而不仅仅是在阿尔茨海默氏症研究中专注于β,主张更深入地探索葡萄糖代谢在认知保存中的作用。
结果:慢性α -GPC治疗降低了淀粉样蛋白沉积物的积累,并导致了居民先天免疫细胞,星形胶质细胞和小胶质细胞的炎症反应的实质性平衡。特定的,荧光免疫组织化学和蛋白质印迹分析表明,α-GPC有助于减少皮质和海马反应性星形胶质细胞和促炎的小胶质细胞,同时同时增加抗抗毒素分子的表达。,而α -GPC有益地影响海马中的突触标记突触素。此外,我们观察到α -GPC可以有效地恢复认知功能障碍,这是通过新型对象识别测试来衡量的,其中与3XTGXG -AD AD无培养的小鼠相比,用α -GPC处理的3xTG -AD小鼠花了更多时间探索新的对象。
